تولد نماذج اللغة الكبيرة (LM) نص بطلاقة بشكل ملحوظ ويمكن تكييفها بكفاءة عبر مهام NLP. قياس وضمان جودة النص الذي تم إنشاؤه من حيث السلامة أمر ضروري لنشر LMS في العالم الحقيقي؛ تحقيقا لهذه الغاية، غالبا ما يعتمد العمل السابق على التقييم التلقائي لسمية LM. نناقش هذا النهج بشكل خطير، وتقييم العديد من استراتيجيات تخفيف السمية فيما يتعلق بالتقييم التلقائي والبشري، وتحليل عواقب التخفيف من السمية من حيث التحيز النموذجي وجودة LM. نوضح أنه في حين أن استراتيجيات التدخل الأساسية يمكن أن تتحسن بشكل فعال مقاييس تلقائية تم تأسيسها مسبقا على مجموعة بيانات Realtoxicyprompts، فإن هذا يأتي عند تكلفة انخفاض تغطية LM لكلا النصوص حول، ولهجات المجموعات المهمشة. بالإضافة إلى ذلك، نجد أن التصدير البشري غالبا ما يختلفون في درجات سمية تلقائية عالية بعد تدخلات تخفيض السمية القوي --- تسليط الضوء على مزيد من الفروق الدقيقة المشاركة في التقييم الدقيق لسامة LM.
Large language models (LM) generate remarkably fluent text and can be efficiently adapted across NLP tasks. Measuring and guaranteeing the quality of generated text in terms of safety is imperative for deploying LMs in the real world; to this end, prior work often relies on automatic evaluation of LM toxicity. We critically discuss this approach, evaluate several toxicity mitigation strategies with respect to both automatic and human evaluation, and analyze consequences of toxicity mitigation in terms of model bias and LM quality. We demonstrate that while basic intervention strategies can effectively optimize previously established automatic metrics on the REALTOXICITYPROMPTS dataset, this comes at the cost of reduced LM coverage for both texts about, and dialects of, marginalized groups. Additionally, we find that human raters often disagree with high automatic toxicity scores after strong toxicity reduction interventions---highlighting further the nuances involved in careful evaluation of LM toxicity.
المراجع المستخدمة
https://aclanthology.org/