من المتوقع أن تحتوي أنظمة التسمية على الصور القدرة على الجمع بين المفاهيم الفردية عند وصف المشاهد مع مجموعات المفاهيم التي لم يتم ملاحظتها أثناء التدريب. على الرغم من التقدم الكبير في تقسيم الصور بمساعدة إطار الجيل التلقائي التلقائي، تفشل النهج الحالية في التعميم بشكل جيد إلى مجموعات مفهوم جديدة. نقترح إطارا جديدا يدور حول التحقيق في العديد من مثيلات تدريب التسمية التوضيحية في الصورة المماثلة (استرجاع)، وأداء المناسبات التناظرية على الكيانات ذات الصلة في النماذج الأولية المستردة (القياس)، وتعزيز عملية التوليد بنتائج المنطق (التكوين). تعزز طريقةنا نموذج الجيل عن طريق الإشارة إلى الحالات المجاورة في التدريب المحدد لإنتاج مجموعات مفهوم جديدة في التسميات التوضيحية المولدة. نقوم بإجراء تجارب على معايير تقسيم الصور المستخدمة على نطاق واسع. تحقق النماذج المقترحة تحسنا كبيرا على أساس الأساس المقارنة على كل من مقاييس التقييم المرتبطة بالتكوين ومقاييس تقسيم الصور التقليدية.
Image captioning systems are expected to have the ability to combine individual concepts when describing scenes with concept combinations that are not observed during training. In spite of significant progress in image captioning with the help of the autoregressive generation framework, current approaches fail to generalize well to novel concept combinations. We propose a new framework that revolves around probing several similar image caption training instances (retrieval), performing analogical reasoning over relevant entities in retrieved prototypes (analogy), and enhancing the generation process with reasoning outcomes (composition). Our method augments the generation model by referring to the neighboring instances in the training set to produce novel concept combinations in generated captions. We perform experiments on the widely used image captioning benchmarks. The proposed models achieve substantial improvement over the compared baselines on both composition-related evaluation metrics and conventional image captioning metrics.
المراجع المستخدمة
https://aclanthology.org/
محتوى الويب الحديث - المقالات الإخبارية، منشورات المدونة، الموارد التعليمية، كتيبات التسويق - هي في الغالب متعددة الوسائط.سمة ملحوظة هي إدراج وسائل الإعلام مثل الصور الموضوعة في مواقع ذات مغزى ضمن سرد نصي.في أغلب الأحيان، مصحوبة مثل هذه الصور بتعليقا
هدفنا من خلال هذه الدراسة في إطار المشروع الفصلي للسنة الرابعة إلى إلقاء الضوء على استرجاع الصور من مجموعة كبيرة بالاعتماد على محتوى صورة هدف , و قمنا بتدعيم هذه الدراسة بتطبيق ضمن بيئة الماتلاب لبرنامج بحث عن الصور المشابهة لصورة مدخلة .
و قد تركز
على الرغم من تطبيق نماذج التسلسل العصبي للتسلسل بنجاح على التحليل الدلالي، إلا أنها تفشل في التعميم التركيبي، أي أنها غير قادرة على التعميم بشكل منهجي لتركيبات غير مرئية من مكونات المشاهدة. بدافع من التحليل الدلالي التقليدي حيث يتم احتساب التركيز بشك
تعد أنظمة استرجاع الصور الطبية اعتماداً على المحتوى من التقنيات الحديثة التي يسعى الباحثون إلى تكاملها مع أنظمة التشخيص بمساعدة الحاسوب. تقوم هذه الأنظمة أساساً بإيجاد صور في قاعدة بيانات تضم مجموعة كبيرة من الصور ذات محتوى مشابه لصورة استعلام معينة.
نحن نصف خسارة اهتمام مدفوع المستوى الذي يحسن التعميم التركيبي في المحللين الدلاليين.يعتمد نهجنا على الخسائر القائمة التي تشجع على خرائط الاهتمام في نماذج التسلسل العصبي إلى التسلسل لتقليد إخراج خوارزميات محاذاة الكلمة الكلاسيكية.حيث استخدم العمل السا