على الرغم من إظهار قيم واعدة للتطبيقات المصب، فإن توليد السؤال والإجابة معا يتم استكشافها. في هذه الورقة، نقدم مهمة جديدة تستهدف توليد زوج الإجابة على الأسئلة من الصور المرئية. لا يتطلب عدم توليد أزواج حول الإجابات المتنوعة فقط ولكن أيضا الحفاظ على الاتساق منهم. نحن ندرس نماذج جيل مختلفة لهذه المهمة واقتراح ثلاث نماذج: نموذج خط الأنابيب، النموذج المشترك، النموذج المتسلسل. نحن ندمج الاستدلال الاختلافي في هذه النماذج لتحقيق التنوع والاتساق. ونحن نقترح أيضا تقدير تمثيل المنطقة ومحاذاة الاهتمام لتحسين الاتساق أكثر. ونحن أخيرا وضع مقيم كقيط كمي للاتساق. نحن نقوم بالتحقق من نهجنا على معيارين، VQA2.0 و Visual-7W، من خلال تقييم التنوع والاتساق يدويا يدويا. تظهر النتائج التجريبية فعالية نماذجنا: يمكن أن تولد أزواج متنوعة أو متسقة. علاوة على ذلك، يمكن استخدام هذه المهمة لتحسين جيل السؤال المرئي والإجابة على السؤال المرئي.
Although showing promising values to downstream applications, generating question and answer together is under-explored. In this paper, we introduce a novel task that targets question-answer pair generation from visual images. It requires not only generating diverse question-answer pairs but also keeping the consistency of them. We study different generation paradigms for this task and propose three models: the pipeline model, the joint model, and the sequential model. We integrate variational inference into these models to achieve diversity and consistency. We also propose region representation scaling and attention alignment to improve the consistency further. We finally devise an evaluator as a quantitative metric for consistency. We validate our approach on two benchmarks, VQA2.0 and Visual-7w, by automatically and manually evaluating diversity and consistency. Experimental results show the effectiveness of our models: they can generate diverse or consistent pairs. Moreover, this task can be used to improve visual question generation and visual question answering.
المراجع المستخدمة
https://aclanthology.org/
على الرغم من الأداء الممتاز في مهام مثل الإجابة على الأسئلة، تظل الهيغات القائمة على المحولات حساسة للمغوصات النحوية والسياقية. توفر إعادة صياغة الأسئلة (QP) حلا واعدا كوسيلة لزيادة مجموعات البيانات الحالية. تتضمن التحديات الرئيسية لنماذج QP الحالية
Dual-Encoders هي آلية واعدة لاسترجاع الإجابة في أنظمة الإجابة على الأسئلة (QA). حاليا معظم التشفير المزدوج التقليدية تعلم التمثيل الدلالي للأسئلة والأجوبة فقط من خلال نقاط مطابقة. اقترح الباحثون تقديم ميزات تفاعلات ضمان الجودة في وظيفة التهديف ولكن ب
تم إظهار نماذج الإجابة على الأسئلة (QA) للحصول على فهم القراءة لاستغلال تحيزات محددات غير مقصودة مثل السؤال - التداخل المعجمي السياق. هذا يعيق نماذج ضمان الجودة من المعمم إلى العينات الممثلة تمثيلا مثل الأسئلة ذات التداخل المعجمي المنخفض. يمكن أن يكو
تعتبر تصور القصة مهمة غير مسجلة تقع عند تقاطع العديد من الاتجاهات البحثية المهمة في كل من رؤية الكمبيوتر ومعالجة اللغات الطبيعية. في هذه المهمة، نظرا لسلسلة من التسميات التوضيحية باللغة الطبيعية التي تنشأ قصة، يجب أن يولد الوكيل سلسلة من الصور التي ت
في توليد السؤال، يجب أن يكون السؤال الناتج يرتبطا جيدا وغالبا ما يتعلق بالإجابة بمثابة المدخلات. استمتعت أساليب الجيل العصبي في الغالب بالدليل التوزيعي للكلمات كإجراءات ذات معنى وتوليد أسئلة واحدة في وقت واحد. في هذه الورقة، نستكشف إمكانية الترميزات