ترغب بنشر مسار تعليمي؟ اضغط هنا

توصية الأخبار العصبية مع ترميز الأخبار التعاونية وترميز المستخدم الهيكلي

Neural News Recommendation with Collaborative News Encoding and Structural User Encoding

311   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

اكتسبت توصية الأخبار التلقائية الكثير من الاهتمام من المجتمع الأكاديمي والصناعة. تكشف الدراسات الحديثة أن مفتاح هذه المهمة يكمن في تعلم التمثيل الفعال في كل من الأخبار والمستخدمين. تعمل الأعمال الحالية عادة عنوان الأخبار والمحتوى بشكل منفصل مع إهمال تفاعلها الدلالي، وهو غير كاف من أجل فهم نص الأخبار. إلى جانب ذلك، ترميز النماذج السابقة سجل تصفح المستخدم دون الاستفادة من الارتباط الهيكلي لأخبار استعراض المستخدمين لتعكس اهتمامات المستخدم صراحة. في هذا العمل، نقترح إطار توصية أخبار يتكون من ترميز الأخبار التعاونية (CNE) وترميز المستخدم الهيكلية (SUE) لتعزيز تعلم الأخبار وتمثيل المستخدم. CNE مجهزة LSTMS ثنائي الاتجاه ترميز عنوان الأخبار والمحتوى التعاوني مع الوحدات النمطية الشاملة والاهتمام لمعرفة تمثيل الأخبار الدلالية التفاعلية. تستخدم SUE الشبكات التنافسية الرسمية لاستخراج السمات الهيكلية الكتلة لسجل المستخدم، تليها وحدات الانتباه بين الكتلة والإنتباه إلى التعلم لتعلم تمثيلات فائدة المستخدم الهرمية. نتائج التجربة على DataSet العقل التحقق من صحة فعالية نموذجنا لتحسين أداء توصية الأخبار.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

التنوع في توصية الأخبار مهم للنقاش الديمقراطي.لا تركز استراتيجيات التوصية الحالية، وكذلك مقاييس التقييم لأنظمة التوصية، بشكل صريح على هذا الجانب من توصية الأخبار.في مجموعة 2021، قامنا بتنفيذ رواية واحدة، وتنشيط التقييم المعياري على الرواية، والتنشيط "، واستخدامه"، واستخدامه لمقارنة استراتيجيات توصية لتعليقات نيويورك تايمز، واحدة تستند إلى إعجاب المستخدم وآخر على المحرر اللقطات.وجدنا أن استراتيجيات توصية التعليق تؤدي إلى توصيات أقل باستمرار تفعيل التعليقات المتاحة في مجموعة البيانات، ولكن يختار المحرر أكثر من ذلك.قد يشير هذا إلى أن محرري نيويورك تايمز يدعمون نموذج ديمقراطي تداول، حيث يعتبر تنشيط أقل مثالية للنقاش الديمقراطي.
إن تأطير مقالة إخبارية تعني تصوير الحدث المبلغ عنها من منظور محدد، على سبيل المثال، من منظور اقتصادي أو صحي. Reframing وسائل لتغيير هذا المنظور. اعتمادا على الجمهور أو الحضور، يمكن أن تصادف REFRIMING ضرورية لتحقيق التأثير المرغوب على القراء. يرتبط Re framing بتكييف الأسلوب والشاعر، والتي يمكن معالجة تقنيات توليد النص العصبي. ومع ذلك، فإن الأمر أكثر تحديا لأن تغيير الإطار يتطلب إعادة كتابة الجمل بأكملها بدلا من عبارات واحدة. في هذه الورقة، ندرس كيفية إعادة صياغة الجمل في مقالات إخبارية مع الحفاظ على تماسكها إلى السياق. نتعامل مع REMREMING كمركز ملء على مستوى الجملة الذي نربط النماذج العصبية على كوربوس موجود للإطار الوسائط. لتوجيه التدريب، نقترح ثلاث استراتيجيات: محاكمة اللغة المؤطرة، والحفاظ على الكيانات المسماة، والتعلم الخصم. نقوم بتقييم النماذج المعنية تلقائيا وتدويا من أجل اتساق الموضوع والتماسك والتعداد الناجح. تشير نتائجنا إلى أن إنشاء نص مؤطر بشكل صحيح يعمل بشكل جيد ولكن مع المفاضلات.
تقدم هذه الورقة ترميز تصحيح ذاتي (SECOCO)، وهو إطار يتعامل بشكل فعال مع المدخلات الصاخبة للترجمة الآلية العصبية القوية عن طريق إدخال تنبؤ تصحيح ذاتي.تختلف عن الأساليب القوية السابقة، تمكن SECOCO NMT من تصحيح المدخلات الصاخبة بشكل صريح وحذف أخطاء محدد ة في وقت واحد مع عملية فك تشفير الترجمة.SECOCO قادرة على تحقيق تحسينات كبيرة على خطوط أساس قوية على مجموعتين لاختبار العالم الحقيقي ومجموعة بيانات معيار WMT مع إمكانية الترجمة الترجمة جيدة.سنجعل كودنا ومجموعات البيانات متاحة للجمهور قريبا.
إن دمج طرائق الإدخال المتعددة في نظام الترجمة الآلي (MT) يكتسب شعبية بين الباحثين MT. على عكس مجموعة البيانات المتاحة للجمهور لمهام ترجمة الآلات متعددة الوسائط، حيث تكون التسميات التوضيحية أوصاف صورة قصيرة، توفر التعليق الأخبار وصفا أكثر تفصيلا لمحتو يات الصور. نتيجة لذلك، يتم العثور على العديد من الكيانات المسماة المتعلقة بالأشخاص المحددين والمواقع وما إلى ذلك. في هذه الورقة، يكتسبان مجموعة بيانات أخبار أحادية أحادية الأبعاد التي أبلغت باللغة الإنجليزية والهندية مقترنة بالصور لتوليد كوربوس موازية من اللغة الإنجليزية الهندية الاصطناعية. يستخدم Corpus الموازي لتدريب الترجمة الآلية العصبية باللغة الإنجليزية (NMT) ونظام MMT باللغة الإنجليزية من خلال دمج ميزة الصورة المقترنة مع Corpus الموازي المقابلة. نحن أيضا إجراء تحليل منهجي لتقييم أنظمة MT الإنجليزية-الهندية مع 1) المزيد من البيانات الاصطناعية و 2) عن طريق إضافة البيانات المترجمة إلى الوراء. يؤدي النتيجة لدينا إلى تحسن من حيث درجات BLEU لكل من أنظمة NMT (+8.05) و MMT (+11.03).
توصية الأخبار أمر بالغ الأهمية للوصول إلى الأخبار المخصصة. تعتمد أساليب توصيات الأخبار الموجودة على معظم طرق التخزين المركزي للأخبار التاريخية للمستخدمين النقر فوق بيانات السلوك، والتي قد تؤدي إلى مخاوف الخصوصية والمخاطر. يعد التعلم الفيدرالي إطارا ل لحفاظ على الخصوصية لعملاء متعددين نماذج قطار تعاوني دون مشاركة بياناتهم الخاصة. ومع ذلك، فإن حساب التكاليف والاتصال في تعلم العديد من نماذج توصية الأخبار الموجودة بطريقة غير مقبولة غير مقبولة لعملاء المستخدمين. في هذه الورقة، نقترح إطارا تعليميا فائضا فعالا لتوصية الأخبار التي تحافظ على الخصوصية. بدلا من تدريب وتوصيل النموذج بأكمله، نقوم بتحلل نموذج توصية الأخبار إلى نموذج أخبار كبير يحتفظ به في الخادم ونموذج مستخدم إضاءة الوزن مشتركا على كل من الخادم والعملاء، حيث يتم توصيل تمثيل الأخبار ونموذج المستخدم بين الخادم والعملاء وبعد وبشكل أكثر تحديدا، يطلب العملاء طراز المستخدم والتمثيلات الأخبار من الخادم، وإرسال تدرجاتهم المحسوبة محليا إلى الخادم للتجميع. يقوم الخادم بتحديث نموذج المستخدم العالمي الخاص به مع التدرجات المجمعة، ويقوم كذلك بتحديث نموذج الأخبار الخاص به لاستنتاج تمثيلات أخبار محدثة. نظرا لأن التدرجات المحلية قد تحتوي على معلومات خاصة، فإننا نقترح طريقة تجميع آمنة للتدرجات الإجمالية في طريقة الحفاظ على الخصوصية. تظهر التجارب في مجموعات بيانات عالمية حقيقية أن طريقتنا يمكن أن تقلل من حساب حساب الاتصالات والاتصال على العملاء مع الحفاظ على أداء نموذج واعد.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا