ترغب بنشر مسار تعليمي؟ اضغط هنا

Hisnet: معجم قطبية بناء على كلمة Wordnet لتحليل العاطفة

HisNet: A Polarity Lexicon based on WordNet for Emotion Analysis

308   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تلقت الأساليب القائمة على القاموس في تحليل المعنويات الاهتمام العلمي مؤخرا، وأكثر الأمثلة الشاملة التي يمكن العثور عليها باللغة الإنجليزية. ومع ذلك، فإن العديد من اللغات الأخرى تفتقر إلى قواميس القطبية، أو تلك الموجودة صغيرة الحجم كما في حالة SentiTurknet، أول وفقط القطبية القاسم في التركية. وبالتالي، تهدف هذه الدراسة إلى تمديد محتوى SentiTurknet من خلال مقارنة الكلامين المتاحين في التركية، وهي Kenet و TR-Wordnet من Balkanet. تحقيقا لهذه الغاية، تم إنشاء قاموس الأسقفية التركية الحالية بالاعتماد على 76825 متلازمة مطابقة Kenet، حيث تم تفاح كل Synset مع ثلاث ملصقات قطبية، وهي إيجابية وسلبية ومحايدة. وفي الوقت نفسه، كشفت مقارنة Kenet و Tr-Wordnet of Balkanet عن نقاط الضعف الخاصة بهم مثل تكرار نفس الحواس، ونقص الدمج اللازم للعناصر التي تنتمي إلى نفس المكامنة ووجود إصدارات أضيق زائدة من التزامن، والتي تتم مناقشتها في ضوء إمكاناتهم لتحسين قواعد البيانات المعجمية الحالية التركية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

بسبب شعبية خدمات مساعد الحوار الذكي، أصبح التعرف على عاطفي الكلام أكثر وأكثر أهمية.في التواصل بين البشر والآلات، يمكن للتعرف على العاطفة وتحليل العاطفة تعزيز التفاعل بين الآلات والبشر.تستخدم هذه الدراسة نموذج CNN + LSTM لتنفيذ معالجة العاطفة الكلام ( SER) والتنبؤ بها.من النتائج التجريبية، من المعروف أن استخدام نموذج CNN + LSTM يحقق أداء أفضل من استخدام نموذج NN التقليدي.
البنغالية هي لغة موارد منخفضة تفتقر إلى الأدوات والموارد الخاصة بالكشف عن المحتوى النصي النصي والفاحش.حتى الآن، لا يوجد معجم لكشف الفاحش في نص وسائل الإعلام الاجتماعية البنغالية.تقدم هذه الدراسة معجم بنغالي فاحشين يتكون من أكثر من 200 مصطلحات بنغالية ، والتي يمكن اعتبارها قذرة أو عامية صلبة أو فاحشة أو فاحشة.يتم تقديم منهجية شبه أوتوماتيكية لتطوير المعجم الملحق الذي يهدف إلى تطور كائنات فاحشة وكلمة تضمين وكالة الكلام (POS).يحقق المعجم المطور تغطية حوالي 0.85 للكشف عن المحتوى الفاحش والمحتوى في مجموعة بيانات التقييم.تنطوي النتائج التجريبية على أن المعجم المطور فعال في تحديد الفحش في محتوى بنغالي وسائل التواصل الاجتماعي.
تحليل المعنويات المستندة إلى جانب الجسيم (ABASA)، تهدف إلى التنبؤ بأقطاب الجوانب، هي مهمة جيدة المحبوس في مجال تحليل المعنويات. وأظهر العمل السابق معلومات النحوية، على سبيل المثال أشجار التبعية، يمكن أن تحسن بشكل فعال أداء ABSA. في الآونة الأخيرة، أظ هرت النماذج المدربة مسبقا (PTMS) أيضا فعاليتها على ABAMA. لذلك، تنشأ السؤال بشكل طبيعي ما إذا كانت PTMs تحتوي على معلومات نصنية كافية ل ABAMA حتى نتمكن من الحصول على نموذج ABSA جيد فقط بناء على PTMS. في هذه الورقة، نقارن أولا الأشجار المستحثة من PTMS وأشجار تحليل التبعية في العديد من النماذج الشعبية لمهمة ABASA، والتي توضح أن الشجرة المستحقة من روبرتا الصعبة (FT-Roberta) تتفوق على الشجرة التي قدمتها المحلل المحاور. تكشف تجارب التحليل الإضافي أن شجرة FT-Roberta المستحقة أكثر من المعنويات - الموجهة إلى كلمة ويمكن أن تفيد مهمة ABASA. تشير التجارب أيضا إلى أن النموذج النقي المستند إلى روبرتا يمكن أن تفوق أو تقريب من عروض SOTA السابقة على ست مجموعات بيانات عبر أربع لغات لأنها تتضمن ضمنيا المعلومات الأساسية الموجهة نحو المهام.
نماذج اللغة العصبية، بما في ذلك النماذج القائمة على المحولات، والتي تدرب مسبقا على كوربورا كبيرة جدا أصبحت وسيلة شائعة لتمثيل النص في مهام مختلفة، بما في ذلك الاعتراف بالعلاقات الدلالية النصية، على سبيل المثال نظرية هيكل الوثائق عبر المستندات. عادة م ا تكون النماذج المدربة مسبقا عادة ما يتم ضبطها على مهام المصب وتستخدم ناقلات تم الحصول عليها كمدخلات للصفين العصبي العميق. لا توجد معرفة لغوية تم الحصول عليها من الموارد والأدوات. في هذه الورقة، نقارن هذه النهج الشاملة بمجموعة من تمثيل الجملة الدوافع التي تعتمد على الرسم البياني الغني في الرسم البياني والشبكة العصبية النموذجية المطبقة على مهمة الاعتراف بعقود CST في البولندية. يصف التمثيل مستويات مختارة من هيكل الجملة بما في ذلك وصف المعاني المعجمية على أساس أجهزة WordNet (PLWOLNET) ومفاهيم Sumo المتصلة. تظهر النتائج التي تم الحصول عليها أنه في حالة العلاقات الصعبة والتدريب المتوسطة الحجم تمثيل النص المخصب من الناحية الدلوية يؤدي إلى نتائج أفضل بكثير.
كانت أدوات معالجة اللغة الطبيعية والموارد قد تم إنشاؤها بشكل أساسي وتدريبها بشكل أساسي على أنواع اللغات القياسية.في الوقت الحاضر، مع استخدام كميات كبيرة من البيانات التي تم جمعها من وسائل التواصل الاجتماعي، تحتاج إلى معالجة الأصناف والتسجيلات الأخرى، والتي قد تقدم تحديات وصعوبات أخرى.في هذا العمل، نركز على اللغة الإنجليزية ونقدم تحليلا أوليا من خلال مقارنة كوربوس Twitteraae، المشروح للعرق، و Wordnet عن طريق تحديد وشرح اللغة عبر الإنترنت التي تفتقدها WordNet.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا