ترغب بنشر مسار تعليمي؟ اضغط هنا

مجال جديد، جهد كبير؟ما مقدار البيانات الضرورية لتكييف علامة زمنية إلى مجال مساعد الصوت

New Domain, Major Effort? How Much Data is Necessary to Adapt a Temporal Tagger to the Voice Assistant Domain

308   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تعتبر العلامات الموثوقة للتعبيرات الزمنية (TES، على سبيل المثال، كتاب طاولة في L'Osteria مساء الأحد) هو الشرط المركزي للمساعدين الصوتيين (VAS).ومع ذلك، هناك ندرة الموارد والأنظمة لنطاق VA، حيث يتم تدريب التقنيص الزمني المتاحين علنا فقط على مجالات مختلفة إلى حد كبير، مثل الأخبار والنص السريري.نظرا لأن تكلفة التسجيل في مجموعات البيانات الكبيرة عبارة عن محظور، فإننا نحقق في المفاضلة بين البيانات والأداء داخل المجال في DA-Time، وهو Tagger الزمني الهجين للمجال الإنجليزي VA الذي يجمع بين الهندسة المعمارية العصبية للاعتراف القوي، مع محللباس te نومي.نجد أن التعلم النقل يقطع شوطا طويلا حتى مع وجود 25 جمل داخل المجال: يؤدي DA-Time في حالة الفن في مجال الأخبار، وتفوقه بشكل كبير على نطاق VA.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

يحقق نماذج اللغة المستردة مسبقا للمحولات نتائج رائعة في العديد من معايير NLU المعروفة. ومع ذلك، في حين أن أساليب المحاكمات مريحة للغاية، فهي مكلفة من حيث الوقت والموارد. هذا يدعو إلى دراسة تأثير حجم البيانات المحدد على معرفة النماذج. نستكشف هذا التأث ير على القدرات النحوية لروبيرتا، باستخدام النماذج المدربة على الأحجام الإضافية لبيانات النص الخام. أولا، نستخدم التحقيقات الهيكلية النحوية لتحديد ما إذا كانت الطرز المحددة على مزيد من البيانات ترمز كمية أعلى من المعلومات النحوية. ثانيا، نقوم بإجراء تقييم نصلي مستهدف لتحليل تأثير حجم البيانات المحدد على أداء التعميم النحوي للنماذج. ثالثا، قارنا أداء النماذج المختلفة على ثلاثة تطبيقات المصب: وضع علامات جزء من الكلام وتحليل التبعية وإعادة صياغة الحساب. نحن نتكمل دراستنا بتحليل مفاضلة التكلفة - المنفعة للتدريب مثل هذه النماذج. تظهر تجاربنا أنه في حين أن النماذج المحددة على مزيد من البيانات ترمز المزيد من المعرفة النحوية وأداء أفضل في تطبيقات المصب، فإنها لا تقدم دائما أداء أفضل عبر الظواهر الأساسية المختلفة وتأتي بتكلفة مالية وبيئية أعلى.
تم في هذا البحث مناقشة معايير الاختيار و التقييس لسجلات زمنية حقيقية لتوافق كود التصميم السوري. تم استخدام اجراءات التقييس في مجال الزمن و مجال التردد لتقييس عدد من السجلات الحقيقية المتوفرة لتلائم طيف الاستجابة السوري. تم تحري و مقارنة السجلات ال زمنية الناتجة من ناحية مناسبتها كمدخل للتحليل بالسجل الزمني لحالات أبنية قائمة.
في الأعوام السابقة ظهر ويب جديد يعمل على التوازي مع الويب التقليدي، هو ويب البيانات المترابطة، و يكمن جوهره في تقديم البيانات بصيغة قابلة للفهم من قبل الآلة. و ذلك من خلال وصف هذه البيانات باستخدام مجموعة من المفردات تدعى انطولوجيا الويب، و في هذا ال وقت الذي أصبحت فيه الأدوات و المعايير المتعلقة بالويب الدلالي أكثر شمولا و استقرارا، مازال موضوع نشر بيانات الجامعة على شكل بيانات مترابطة يواجه مجموعة من التحديات أهمها عدم وجود أنطولوجيا موحدة و مقبولة بشكل كامل يمكن استخدامها في توصيف بيانات الجامعة. و من هنا يهدف هذا البحث إلى إيجاد أنطولوجيا ويب تحدد المفاهيم و المفردات التي تمكننا من توصيف البيانات في مجال الجامعة، بالتالي يكون بالإمكان مكاملة هذه البيانات مع بيانات من جامعات أخرى و إجراء الاستعلامات عليها. و من هنا يهدف هذا البحث إلى إيجاد أنطولوجيا الويب التي يمكن استخدامها لتوصيف البيانات في مجال الجامعة، بالتالي يكون ممكنا مكاملة هذه البيانات مع بيانات من جامعات أخرى و إجراء الاستعلامات عليها. و تم ذلك عن طريق إعادة استخدام معاجم منشورة على الويب و إضافة بعض الأصناف و الخصائص إليها، و تم تنظيم هذه الأنطولوجيا و مفرداتها باستخدام أداة بروتيجه Protégé
نقدم تاريخ DART، سجل بيانات منظم في المجال المفتوح إلى مجموعة بيانات جيل النص مع أكثر من 82 ألف حالة (لعبة السهام). يمكن أن تكون التعليقات التوضيحية البيانات إلى النص عملية مكلفة، خاصة عند التعامل مع الجداول التي تعد المصدر الرئيسي للبيانات المنظمة و يحتوي على هياكل غيرية. تحقيقا لهذه الغاية، نقترح إجراءات لاستخراج ثلاث مرات الدلالية من الجداول التي ترميز هياكلها من خلال استغلال التبعيات الدلالية بين رؤوس الطاولة وعنوان الجدول. اندمج إطار عمل مواد DataSet لدينا مصادر غير متجانسة بفعالية من أنظمة التحليل الدلالي المفتوح المجال والتحريغ عن طريق استخدام التقنيات بما في ذلك التوضيح التوضيحية في علم الأطباق، زوج الإجابة السؤالية إلى تحويل الجملة التصريحي، وتوحيد المسند، كل ذلك مع الحد الأدنى من التحرير بعد التحرير. نقدم التقييم المنهجي على DART بالإضافة إلى نتائج جديدة من أحدث النتائج على WebNLG 2017 لإظهار أن Dart (1) يطرح تحديات جديدة إلى مجموعات البيانات الحالية إلى النص و (2) تسهيل التعميم خارج النطاق وبعد يمكن العثور على بيانات ورمز لدينا في https://github.com/yale-lily/dart.
أحد كتل المبنى الأولى لإنشاء مساعد صوت يتعلق بمهمة وضع علامة الكيانات أو السمات في استعلامات المستخدم. يمكن أن يكون هذا تحديا بشكل خاص عندما تكون الكيانات في العاشر من الملايين، كما هو الحال على سبيل المثال كتالوجات الموسيقى. تتطلب نماذج وضع العلامات التدريبية التدريبية على نطاق صناعي كميات كبيرة من استفسارات المستخدم المسمى بدقة، والتي غالبا ما تكون صعبة ومكلفة لجمعها. من ناحية أخرى، جمع المساعدون الصوتيين عادة الكثير من الاستفسارات غير المستمرة التي لا تزال غير منفصلة في كثير من الأحيان. تقدم هذه الورقة منهجية خاضعة للإشراف ضعيفا لتسمية كميات كبيرة من سجلات الاستعلام الصوتية، معززة مع خطوة تصفية يدوية. تظهر التقييمات التجريبية لدينا أن نماذج علامات الشريعة المدربة على البيانات المتفوقة على البيانات التي تجريب ضعيف تدربت على البيانات المشروحة باليد أو الاصطناعية، بتكلفة أقل. علاوة على ذلك، يؤدي التصفية اليدوية للبيانات الخاضعة للإشراف إلى انخفاض كبير في معدل خطأ العقوبة، مع السماح لنا بتقليل جهود الرعاية البشرية بشكل كبير من أسابيع إلى ساعات، فيما يتعلق بالتعليق اليدوي للاستفسارات. يتم تطبيق الطريقة بنجاح Bootstrap نظام علامات Slot لخدمة تدفق الموسيقى الرئيسية التي تخدم حاليا العديد من عشرات الآلاف من الاستفسارات الصوتية اليومية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا