ترغب بنشر مسار تعليمي؟ اضغط هنا

الملامح الوظيفة بعد التحرير للترابط

Post-Editing Job Profiles for Subtitlers

330   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تكنولوجيات اللغة، مثل الترجمة الآلية (MT)، ولكن أيضا تطبيق الذكاء الاصطناعي بشكل عام ووفرة من أدوات القطط والمنصات لها تأثير متزايد على سوق الترجمة. تصبح التفاعل البشري مع هذه التقنيات أكثر أهمية على الإطلاق لأنها تؤثر على سير عمل المترجمين وبيئات العمل وملامح الوظائف. علاوة على ذلك، له آثار على تدريب المترجم. تتمثل إحدى المهام التي ظهرت مع تكنولوجيات اللغة بعد التحرير (PE) حيث يقوم المترجم البشري بتصحيح الناتج المترجم المترجم وفقا للمبادئ التوجيهية المعينة ومعايير الجودة (O'Brien، 2011: 197-198). تستخدم بالفعل على نطاق واسع في العديد من إعدادات الترجمة التقليدية، وقد دخل استخدامها في عمليات أكثر إبداعية مثل الترجمة الأدبية والترجمة السمعية البصرية (AVT) أيضا. مع دمج أنظمة MT، يجب أن تصبح عملية الترجمة أكثر كفاءة. تتأثر كل من العمليات الاقتصادية والمعرفية ومعها، حيث تتغير الكفاءات اللازمة لجميع أصحاب المصلحة. في هذه الورقة، نريد وصف ملفات تعريف الوظائف المحتملة المختلفة والكفاءات المعنية عند ترجمات ما بعد التحرير.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

يتم استخدام نماذج ما بعد التحرير التلقائي (APE) مخرجات نظام الترجمة الآلية (MT) الصحيحة عن طريق التعلم من أنماط ما بعد التحرير البشري.نقدم النظام المستخدم في التقديم الخاص بنا إلى المهمة المشتركة (APE) APانية (EN-DE).نستفيد نظام MT الحديث (NG et al.، 2019) لهذه المهمة.للحصول على مزيد من التحسينات، نقوم بتكييف نموذج MT إلى مجال المهام باستخدام Wikimatrix (Schwenket al.، 2021) متبوعا بضبط جيد مع عينات إضافية للقرد من الإصدارات السابقة للمهمة المشتركة (WMT-16،17،18) وتمتلكنماذج.تغلب أنظمتنا على خط الأساس على درجات TER على مجموعة اختبار WMT'21.
تبنت تكنولوجيا اللغة بالفعل إلى حد كبير من قبل معظم مزودي خدمات اللغة (LSPs) ومدمج في عمليات الترجمة التقليدية. في هذا السياق، هناك العديد من الأساليب المختلفة لتطبيق النصوص بعد التحرير (PE) من نص مترجمة النص، بما في ذلك عمليات سير عمل مختلفة وخطوات يمكن أن تكون فعالة أكثر أو أقل فعالية ومواتية. في هذه الورقة، نقترح سير عمل بعد تحرير ثلاث خطوات (PEW). الرسم من Insight Insight، تهدف هذه الورقة إلى توفير إطار أساسي ل LSPs و Post-Editers حول كيفية تبسيط سير عمل ما بعد التحرير من أجل تحسين الجودة، وتحقيق ربحية أعلى وعودة أفضل على الاستثمار وتوحيد العمليات الداخلية من حيث جهود الإدارة واللغوية عندما يتعلق الأمر بخدمات PE. نقول أن PEW شامل يتكون في ثلاث مهام أساسية: عمليات تقييم ما قبل التحرير والتحرير بعد التحرير والترجمة التوضيحي (MT) (GUERRERO، 2018) المدعومة من ثلاثة أدوار أساسية: ما قبل المحرر، ما بعد المحرر والانجيلي ( جين، 2020). علاوة على ذلك، توضح الورقة المرسلة مسبقة التحديات التدريبية الناشئة عن هذه PEW، التي تدعمها نتائج البحوث التجريبية، على النحو الوارد في مسح رقمي بين المهنيين في مجال صناعة اللغة (الجينات، 2020)، التي أجريت في سياق ندوة الويب بعد التحرير وبعد تتألف عينة من 51 ممثلا لممثلي LSPs و 12 ممثلين عن ممثلي SLV (بائعي اللغة الفردي).
الملخصات التلقائية لديها القدرة على مساعدة الأطباء في تبسيط المهام الكتابية مثل اتخاذ الملاحظات.ولكن من الصعب بشكل مسهل تقييم هذه الأنظمة وإظهار أنها آمنة لاستخدامها في بيئة سريرية.للتحايل على هذه المسألة، نقترح نهج شبه تلقائي حيث يلاحظ الأطباء بعد ت حرير الأطباء قبل تقديمها.نقوم بإجراء دراسة أولية في توفير مذكرات الاستشارات التي تم إنشاؤها تلقائيا مع التحرير بعد التحرير.يطلب من مقيمينا الاستماع إلى استشارات وهمية وإرسال ثلاثة ملاحظات توليد ثلاثة ملاحظات.نحن الوقت في هذا وتجد أنه أسرع من كتابة الملاحظة من الصفر.نقدم نظرة ثاقبة والدروس المستفادة من هذه التجربة.
تم تلخيص الاستخراج هو الدعامة الرئيسية للتلخيص التلقائي لعدة عقود. على الرغم من كل التقدم المحرز، ما زالت الملخصات الاستخراجية تعاني من أوجه القصور بما في ذلك مشاكل Aquerence الناشئة عن استخراج الجمل بعيدا عن سياقها الأصلي في المستند المصدر. هذا يؤثر على تماسك وكمية ملخصات الاستخراجية. في هذا العمل، نقترح خطوة خفيفة الوزن لتحرير الوزن للملخصات الاستخراجية التي تقوم بمراكز حول قرار لغز واحد: استئناف عبارات الاسم. نقوم بإجراء دراسات التقييم البشرية التي تظهر أن قضاة الخبراء البشري يفضلون بشكل كبير إنتاج نظامنا المقترح على الملخصات الأصلية. علاوة على ذلك، بناء على دراسة تقييم تلقائي، نقدم دليلا على قدرة نظامنا على توليد القرارات اللغوية التي تؤدي إلى تحسين ملخصات الاستخراجية. نرسم أيضا رؤى حول كيفية استغلال النظام الأوتوماتيكي بعض الإشارات المحلية المتعلقة بأسلوب كتابة نصوص المقال الرئيسية أو النصوص الموجزة لجعل القرارات، بدلا من التفكير حول السياقات بشكل عملي.
على الرغم من نوعية جيدة بشكل جيد لأنظمة الترجمة الآلية (MT)، تتطلب مخرجات MT تصحيحات. تم تقديم نماذج ما بعد التحرير التلقائي (APE) لأداء هذه التصحيحات دون تدخل بشري. ومع ذلك، لا يتمكن أي نظام من أتمتة عملية التحرير بالكامل (PE). علاوة على ذلك، في حين أن العديد من أدوات الترجمة، مثل ذكريات الترجمة (TMS)، فإن الاستفادة إلى حد كبير من مدخلات المترجمين، لا يزال تفاعل الإنسان (HCI) محدودا عندما يتعلق الأمر ب PE. تناقش هذه الورقة المحرز في مجال البحث نماذج القرد وتقترح أنها يمكن تحسينها في سيناريوهات تفاعلية أكثر، كما فعلت سابقا في MT مع إنشاء أنظمة MT (IMT) التفاعلية. بناء على الفرضية التي ستستفيد PE من HCI، يتم اقتراح منهجيتين. كلاهما يشير إلى أن إعدادات التعلم الدفاعية التقليدية ليست الأمثل لل PE. بدلا من ذلك، يوصى بتدريب التقنيات عبر الإنترنت لتدريب وتحديث نماذج PE على الطاير، عبر التفاعلات الحقيقية أو المحاكاة مع المترجم.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا