ترغب بنشر مسار تعليمي؟ اضغط هنا

تحسين الإخلاص في تلخيص مبادرة مع توليد ومرشح التباين

Improving Faithfulness in Abstractive Summarization with Contrast Candidate Generation and Selection

256   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

على الرغم من التقدم الكبير في تلخيص الجماع العصبي، أظهرت الدراسات الحديثة أن النماذج الحالية عرضة لإنشاء ملخصات غير مخلصة للسياق الأصلي. لمعالجة المشكلة، نقوم بدراسة توليد واختيار مرشح النقيض كتقنية نطاقات ما بعد المعالجة النموذجية لتصحيح الهلوسة الخارجية (I.E. المعلومات غير موجودة في نص المصدر) في ملخصات غير مخلصة. نتعلم نموذج تصحيح تمييزي عن طريق توليد ملخصات مرشحة بديلة حيث يتم استبدال الكيانات والكميات المسماة في الملخص الذي تم إنشاؤه بأشياء مع أنواع دلالية متوافقة من المستند المصدر. ثم يتم استخدام هذا النموذج لتحديد أفضل مرشح كملخص الناتج النهائي. تبين تجاربنا وتحليلنا عبر عدد من أنظمة التلخيص العصبية أن طريقةنا المقترحة فعالة في تحديد وتصحيح الهلوسة الخارجية. نقوم بتحليل ظاهرة الهلوسة النموذجية لأنواع مختلفة من أنظمة التلخيص العصبية، ونأمل أن تقدم رؤى للعمل في المستقبل على الاتجاه.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

نحن ندرس توليد ملخصات مبادرة مخلصة ومتسقة فعليا مع المقالات المعينة. يتم تقديم صياغة تعليمية متناقضة جديدة، والتي ترفف كل من الملخصات المرجعية، كبيانات تدريب إيجابية، وإنشائها تلقائيا ملخصات خاطئة، كبيانات تدريب سلبية، لتدريب أنظمة التلخيص التي تكون أفضل في التمييز بينهما. ونحن كذلك تصميم أربعة أنواع من الاستراتيجيات لإنشاء عينات سلبية، لتشبه الأخطاء التي تحدث عادة من قبل نماذج من أحدث نماذج، بارت وبيغاسوس، الموجودة في التعليقات التوضيحية البشرية الجديدة من الأخطاء الموجزة. تجارب على Xsum و CNN / Daily Mail تشير إلى أن إطار التعلم المتعاقل لدينا قوي عبر مجموعات البيانات والنماذج. ينتج باستمرار ملخصات واقعية أكثر من المقارنات القوية مع تصحيح الأخطاء بعد وإعادة التشغيل القائمة على الاستقبال، والتدريب غير المباشر، وفقا لتقييم الواقعية القائم على الجودة. صدى القضاة البشرية الملاحظة وتجد أن ملخصاتنا النموذجية تصحح المزيد من الأخطاء.
أظهرت نماذج واسعة النطاق على نطاق واسع عروضا قوية على العديد من توليد اللغة الطبيعية وفهم المعايير.ومع ذلك، فإن إدخال العمولة فيها لتوليد نص أكثر واقعية يظل تحديا.مستوحاة من العمل السابق على جيل المعرفة المنطقي ومنطق العموم التوليد، نقدم طريقتين لإضا فة مهارات ومعرفة المنطق المنطقي إلى نماذج تلخيص مبادرة.فازت هذه الطريقة على خط الأساس على درجات الحمر، مما يدل على تفوق نماذجنا على أساس الأساس.تشير نتائج التقييم البشري إلى أن الملخصات الناتجة عن طريقتنا أكثر واقعية ولديها أخطاء معدلة أقل.
نماذج التلخيص الحديثة تولد بطلاقة للغاية ولكن في كثير من الأحيان مخرجات غير موثوق بها في كثير من الأحيان.هذه الدافع الطفرة من المقاييس التي تحاول قياس واقعية الملخصات التي تم إنشاؤها تلقائيا.نظرا لعدم وجود معايير مشتركة، لا يمكن مقارنة هذه المقاييس.ع لاوة على ذلك، فإن كل هذه الطرق تعالج الواقعية كمفهوم ثنائي وفشل في توفير رؤى أعمق على أنواع التناقضات التي أدلى بها أنظمة مختلفة.لمعالجة هذه القيود، نرتند نماذج من الأخطاء الواقعية واستخدامها لجمع التعليقات التوضيحية الإنسانية من الملخصات التي تم إنشاؤها من أنظمة التلخيص الحديثة عن البيانات الخاصة ب CNN / DM و XSUM.من خلال هذه التعليقات التوضيحية، نحدد نسبة الفئات المختلفة للأخطاء الواقعية ومقاييس التقويمات القياسية، والتي تبين ارتباطها بالحكم البشري بالإضافة إلى نقاط القوة والضعف المحددة.
يؤدي التكرار في جيل اللغة الطبيعية إلى تقليل معلومات النص ويجعله أقل جاذبية.تم اقتراح تقنيات مختلفة لتخفيفها.في هذا العمل، نستكشف واقتراح تقنيات للحد من التكرار في تلخيص مبادرة.أولا، نستكشف تطبيق التدريب غير المحامي وتضمين المصفوفين من العمل السابق ع لى نمذجة اللغة إلى تلخيص مبادرة.بعد ذلك، نقوم بتوسيع التغطية وآليات الاهتمام الزمني إلى مستوى الرمز المميز للحد من التكرار.في تجاربنا على مجموعة بيانات CNN / Daily Mail، نلاحظ أن هذه التقنيات تقلل من مقدار التكرار وزيادة معلومات الإصلاحية من الملخصات، والتي نؤكد عن طريق التقييم البشري.
في هذه الورقة، ندرس تلخيص الجملة المبادرة.هناك ميزان معلومات أساسية يمكن أن تؤثر على جودة تلخيص الأخبار، والتي هي الكلمات الرئيسية للموضوع والهيكل المعرفي لنص الأخبار.علاوة على ذلك، فإن تشفير المعرفة الموجودة لديها أداء ضعيف في هيكل المعرفة بالقضاء ا لسريع.بالنظر إلى هذه، نقترح KAS، ومعرفة رواية وتحويل الكلمات الرئيسية المعزز بإطار تلخيص الجملة المبادرة.يتم استخدام Tri-Encoders لإدماج سياقات النص الأصلي وهيكل المعرفة وموضوع الكلمات الرئيسية في وقت واحد، مع بنية معرفة خطية خاصة.التقييمات التلقائية والبشرية تثبت أن KAS تحقق أفضل العروض.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا