يعد الكشف عن الموقف على Twitter تحديا بشكل خاص بسبب الطول القصير لكل سقسقة، والتعايش المستمر لمصطلحات جديدة وعلاج التصنيف، وانحراف هيكل الجملة من النثر القياسي.تم عرض نماذج لغة ذات ضبطها باستخدام بيانات داخل المجال على نطاق واسع لتكون الحالة الجديدة للعديد من مهام NLP، بما في ذلك اكتشاف الموقف.في هذه الورقة، نقترح طريقة رواية متناصة قائمة بذاتها تعزز نموذج اللغة الملثم للكشف عن الموقف.بدلا من إخفاء الرمز المميز العشوائي، نقترح استخدام نسبة مرجحة للأحكام المرجحة لتحديد الكلمات ذات الموقف العالي ومن ثم نموذج آلية الاهتمام التي تركز على هذه الكلمات.نظهر أن نهجنا المقترح يتفوق على حالة الفنية من أجل الكشف عن البيانات حول بيانات تويتر حول الانتخابات الرئاسية الأمريكية 2020.
Detecting stance on Twitter is especially challenging because of the short length of each tweet, the continuous coinage of new terminology and hashtags, and the deviation of sentence structure from standard prose. Fine-tuned language models using large-scale in-domain data have been shown to be the new state-of-the-art for many NLP tasks, including stance detection. In this paper, we propose a novel BERT-based fine-tuning method that enhances the masked language model for stance detection. Instead of random token masking, we propose using a weighted log-odds-ratio to identify words with high stance distinguishability and then model an attention mechanism that focuses on these words. We show that our proposed approach outperforms the state of the art for stance detection on Twitter data about the 2020 US Presidential election.
المراجع المستخدمة
https://aclanthology.org/
الهدف من الكشف عن الموقف هو تحديد ما إذا كان مؤلف النص مؤلفا مؤلا، محايد أو ضد هدف محدد. على الرغم من التقدم الجوهري في هذه المهمة، فإن إحدى التحديات المتبقية هي ندرة التعليقات التوضيحية. يستخدم تكبير البيانات بشكل شائع لمعالجة ندرة التوضيحية عن طريق
نظرا لأن أنظمة NLP تصبح أفضل في اكتشاف الآراء والمعتقدات من النص، فمن المهم التأكد من أن النماذج ليس فقط دقيقة ولكنها تصل أيضا إلى تنبؤاتها بطرق تتماشى مع المنطق البشري.في هذا العمل، نقدم طريقة لإنقاذ الترشيد يشبه الإنسان نموذجا للكشف عن الموقف باستخ
النمذجة اللغوية المعقدة (MLM) هي واحدة من المهام الفرعية الرئيسية في محاكاة لغة الرؤية. في الإعداد عبر الوسائط، يتم ملثمين الرموز في الجملة بشكل عشوائي، والنموذج يتوقع أن تكون الرموز الممكنة التي أعطتها الصورة والنص. في هذه الورقة، نلاحظ العديد من عي
التعاطف هو الرابط بين الذات والآخرين.اكتشاف وفهم التعاطف هو عنصر أساسي لتحسين التفاعل بين الإنسان.ومع ذلك، فإن التعليق البيانات للكشف عن التعاطف على نطاق واسع هو مهمة صعبة.توظف هذه الورقة تدريبات متعددة المهام مع تقطير المعرفة لدمج المعرفة من الموارد
يستلزم الكشف عن الموقف (SD) تصنيف معنويات نص تجاه هدف معين، وهي مهمة فرعية ذات صلة لتحليل تعدين الرأي والوسائط الإعلامية الاجتماعية.وقد استكشفت الأعمال الحديثة تسريب المعرفة تكمل الكفاءة اللغوية والمعرفة الكامنة عن النماذج اللغوية الكبيرة المدربة مسب