ترغب بنشر مسار تعليمي؟ اضغط هنا

استخراج النموذج والتحويل الخصم، بيرت الخاص بك عرضة للخطر!

Model Extraction and Adversarial Transferability, Your BERT is Vulnerable!

199   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تم إثبات مهام معالجة اللغة الطبيعية (NLP)، بدءا من تصنيف النص إلى جيل النص، من خلال نماذج اللغة المحددة مسبقا، مثل بيرت. هذا يسمح للشركات بإنشاء برامج برت أقوى بسهولة عن طريق تثبيت نماذج Berted Brounded لمهام المصب. ومع ذلك، عندما يتم نشر نموذج Berted Berted كخدمة، فقد يعاني من هجمات مختلفة تم إطلاقها من قبل المستخدمين الضارين. في هذا العمل، نقدم أولا كيف يمكن أن يسرق الخصم خدمة API القائمة على BERT (النموذج الضحية / الهدف) على مجموعات بيانات معطرة متعددة ذات معرفة مسبقة محدودة واستفسارات. نوضح كذلك أن النموذج المستخرج يمكن أن يؤدي إلى هجمات خصومة قابلة للتحويل شديدة ضد نموذج الضحية. تشير دراساتنا إلى أن نقاط الضعف المحتملة لخدمات API القائمة على بيرت لا تزال تعقد، حتى عندما يكون هناك عدم تطابق معماري بين نموذج الضحية ونموذج الهجوم. أخيرا، نبحث في استراتيجيات دفاعتين لحماية نموذج الضحية، وإيجاد أنه ما لم يتم التضحية بأداء نموذج الضحايا، فإن كلا من استخراج النماذج والانتفاخ الخصوم يمكن أن تساوم على نحو فعال النماذج المستهدفة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

أن تكون شركاء محادثة جيدة، يجب تدريب أنظمة معالجة اللغة الطبيعية (NLP) على إنتاج كلمات مفيدة بشكل سياق. حقق العمل المسبق في تدريب أنظمة NLP بالأهداف القائمة على الاتصالات، حيث يقف المستمع العصبي كشريك اتصال. ومع ذلك، فإن هذه الأنظمة تعاني عادة من الا نجراف الدلالي حيث تتلاشى اللغة المستفادة جذريا من اللغة الطبيعية. نقترح طريقة تستخدم سكان المستمعين العصبيين لتنظيم تدريب المتكلم. نوضح أولا أن الانجراف اللغة ينشأ من معايرة عدم اليقين الفقيرة لمستمع عصبي، مما يجعل تنبؤات عالية اليقين على جمل الرواية. نستكشف من مجموعات المستمعين الفرقة والمقرها الفرقة والتسرب والعثور على أن النتائج السابقة في تحسين كمية عدم اليقين بشكل أفضل. نقيم كل من الأهداف القائمة على السكان بشأن الألعاب المرجعية، وإظهار أن طريقة الفرقة مع معايرة أفضل تمكن المتحدث من توليد الكلام البراغماتية مع التحول إلى مفردات كبيرة وتعميم للألعاب والمستمعين الجديدة.
تحقق هذه الورقة فيما إذا كانت قوة النماذج المدربة مسبقا على البيانات النصية، مثل Bert، يمكن نقلها إلى تطبيقات تصنيف تسلسل الرمز المميز.للتحقق من قابلية نقل النماذج المدربة مسبقا، نقوم باختبار النماذج المدربة مسبقا على مهام تصنيف النص مع معاني عدم تطا بق الرموز، وبيانات تصنيف تسلسل التسلسل غير المدرسي في العالم الحقيقي، بما في ذلك الحمض الأميني والحمض النووي والموسيقى.نجد أنه حتى على البيانات غير النصية، تتخطى النماذج المدربة مسبقا على النص بشكل أسرع، وأداء أفضل من النماذج ذات الادعاء بشكل عشوائي، وأسوأ قليلا فقط من النماذج باستخدام المعرفة الخاصة بمهام المهام.نجد أيضا أن تمثيل النماذج المدربة مسبقا للنصوص وغير النصية تشترك في أوجه التشابه غير التافهة.
المعرفة المعنية بالمعالجة المعنية ذات الصلة أمر بالغ الأهمية لدعم تخطيط الإجراءات للمهام المعقدة. على وجه الخصوص، يمكن استخدام معلومات الأدوات بما يمكن القيام به مع أدوات معينة للحد من مساحة البحث التي تنمو بشكل كبير مع عدد خيارات قابلة للحياة. توفر مصادر نموذجية لمثل هذه المعرفة، وقواعد المعرفة المعيشية المعيشية منظم مثل Cysisnet أو Child Webchild، كمية محدودة من المعلومات التي تختلف أيضا بشكل كبير عبر المجالات المختلفة. بالنظر إلى النجاح الأخير لنماذج اللغة المدربة مسبقا مثل بيرت، فإننا نبحث في ما إذا كان يمكن استخراج معلومات الإحالة المشتركة مباشرة من النص شبه المنظم بذل جهد شرح مقبول. بشكل ملموس، قارنا علاقات المعيشية المشتركة التي تم الحصول عليها من المفاهيم مقابل تلك المستخرجة مع Bert من قواعد بيانات وصفة كبيرة. في هذا السياق، نقترح وظيفة التهديف، بناء على تصنيف Wordnet TEXT لمطابقة شروط محددة لأكثر عمومية، مما يتيح تقييم غني مقابل مجموعة من علاقات الحقيقة الأرضية.
تصف هذه الورقة النظام الفائز في مرحلة خطوط الأنابيب الطرفية للمهمة NLPConTribeGraph.يتكون النظام من ثلاث نماذج قائمة على بيرت وتستخدم النماذج الثلاثة لاستخراج الجمل والكيانات والألعاب الثلاثية على التوالي.تظهر التجارب أن أخذ العينات والتدريب الخصم يم كن أن يعزز النظام بشكل كبير.في مرحلة خطوط الأنابيب المناسبة، حصل نظامنا على متوسط F1 من 0.4703، أعلى بكثير من النظام الموضح الثاني الذي حصل على متوسط F1 من 0.3828.
المهمة الأساسية في استخراج المعلومات هي اكتشاف الحدث الذي يحدد مشغلات الحدث في الجمل التي يتم تصنيفها عادة في أنواع الأحداث. في هذه الدراسة، يعتبر الحدث وحدة لقياس التنوع والتشابه في مقالات إخبارية في إطار نظام أخبار التوصية. فشلت نهج اكتشاف الحدث ال مستندة إلى التصنيف الحالي في التعامل مع مجموعة متنوعة من الأحداث المعبر عنها في مواقف العالم الحقيقي. للتغلب على ذلك، نهدف إلى أداء تصنيف حفلات الأحداث واستكشاف ما إذا كان نموذج محول قادر على تصنيف معلومات جديدة في فصول بروز أقل وأكثر عمومية. بعد مقارنة خط الأساس من آلة ناقلات الدعم (SVM) وعروض التصنيف القائم على المحولات لدينا في العديد من تنسيقات سبين الأحداث، فقد تم تصميمنا حدث متعدد الكلام يمتد كشروط سليمة. يتم تغذية تلك الموجودة في تصنيفنا البرز الذي يتم ضبطه بشكل جيد على Adgeddings الهولندية المدربة مسبقا. علاوة على ذلك، نحن نتفوق على خط أنابيب لنهج حقل عشوائي مشروط (CRF) في اكتشاف كلمة الزناد في الأحداث والتصنيف المستند إلى BERT. إلى حد ما من معرفتنا، نقدم أول نهج استخراج الأحداث الذي يجمع بين محلل نصلي مقصورات مقره الخبراء مع مصنف تحويل محول للهولندية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا