ترغب بنشر مسار تعليمي؟ اضغط هنا

شبكات سيامي للاستدلال في نصوص لغة مالايالامية

Siamese Networks for Inference in Malayalam Language Texts

344   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

إن الاستدلال اللغوي الطبيعي هو طريقة لإيجاد الاستدلالات في نصوص اللغة.فهم معنى الجملة واستدلالها أمر ضروري في العديد من تطبيقات معالجة اللغة.في هذا السياق، نعتبر مشكلة الاستدلال بلغة Dravidian، مالايالام.تدرب شبكات سيامي أزواج فرضية النص مع Adgeddings Word و Argeddings اللازم، ويتم تقييم النتائج مقابل مقاييس التصنيف للتصنيف الثنائي في دروس الاستقصاء والتناقض.توفر XLM-R AMBEBINGS القائم على الهندسة المعمارية السيامية باستخدام الوحدات المتكررة الدائرية وشبكات الذاكرة القصيرة الأجل الثنائية لفترة طويلة نتائج واعدة لمشكلة التصنيف هذه.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

نظرا لتطوير التعلم العميق، حققت مهام معالجة اللغة الطبيعية تقدم كبيرا من خلال الاستفادة من تمثيل التشفير الثنائي الاتجاه من المحولات (بيرت). الهدف من استرجاع المعلومات هو البحث في أكثر النتائج ذات الصلة لاستعلام المستخدم من مجموعة كبيرة من المستندات. على الرغم من أن نماذج استرجاع مقرها بيرت أظهرت نتائج ممتازة في العديد من الدراسات، إلا أن هذه النماذج تعاني عادة من الحاجة إلى كميات كبيرة من الحسابات و / أو مسافات تخزين إضافية. في ضوء العيوب، يتم اقتراح نموذج استرجاع منظم في سيامي في بيرت (Bess) في هذه الورقة. لا يرث BESS فقط مزايا نماذج اللغة المدربة مسبقا، ولكن يمكن أيضا إنشاء معلومات إضافية لتعويض الاستعلام الأصلي تلقائيا. علاوة على ذلك، يتم تقديم استراتيجية تعليم التعزيز لجعل النموذج أكثر قوة. وفقا لذلك، نقيم BESS على ثلاثة كوربورا عامة المتاحة، وتتضح النتائج التجريبية كفاءة نموذج الاسترجاع المقترح.
نحن التحقيق في نماذج لغة المحولات المدربة مسبقا لسد الاستدلال.نقوم أولا بالتحقيق في رؤوس الاهتمام الفردي في بيرت ومراقبة أن رؤساء الاهتمام في طبقات أعلى تركز بشكل بارز على سد العلاقات داخل المقارنة مع الطبقات المنخفضة والمتوسطة، وكذلك عدد قليل من رؤس اء اهتمامات محددة يركزون باستمرار على سد.الأهم من ذلك، نحن نفكر في نماذج اللغة ككل في نهجنا الثاني حيث يتم صياغة دقة سد العسرة كمهمة تتنبئة رمزية مثيرة للمثنين (من اختبار Cloze).تنتج صياغتنا نتائج متفائلة دون أي ضبط جيد، مما يشير إلى أن نماذج اللغة المدربة مسبقا تلتقط بشكل كبير في سد الاستدلال.يوضح تحقيقنا الإضافي أن المسافة بين المداعين - السابقة وسوء السياق المقدمة إلى النماذج اللغوية تلعب دورا مهما في الاستدلال.
تم عرض الجمع بين نموذج لغة مسبق (PLM) مع أنماط نصية للمساعدة في كل من إعدادات الطلقة الصفرية وعدد. بالنسبة للأداء الصفر بالرصاص، فمن المنطقي تصميم أنماط تشبه النص الذي ينظر إليه عن كثب أثناء الاحتجاج بالإشراف على الذات لأن النموذج لم ير أي شيء آخر. ا لتدريب الخاضع للإشراف يسمح بمزيد من المرونة. إذا سمحنا بالرمز الرموز خارج المفردات PLM، فيمكن تكييف الأنماط بشكل أكثر مرونة لمصمم الخصوصيات PLM. الأنماط المتناقضة حيث يمكن أن يكون الرمز المميز أي ناقل مستمر من تلك التي يجب أن يتم فيها اختيار منفصل بين عناصر المفردات، ونحن نسمي أنماط طريقنا المستمرة (كونان). نقوم بتقييم كونان على معايير مدرجة للاستدلال المعجمي في السياق (LIIC) A.K.a. المستقلة المستقلة، وهي مهمة تفاهم لغة طبيعية صعبة مع بيانات تدريب صغيرة نسبيا. في مقارنة مباشرة مع الأنماط المنفصلة، ​​يؤدي كونان باستمرار إلى تحسين الأداء، وضع حالة من الفن الجديد. تجربتنا تعطي رؤى قيمة على نوع النمط الذي يعزز أداء PLM على LIC ورفع أسئلة مهمة فيما يتعلق بفهم PLMS باستخدام أنماط النص.
في الآونة الأخيرة، تم تحقيق أداء مثير للإعجاب على مختلف مهام فهم اللغة الطبيعية من خلال دمج بناء الجملة والمعلومات الدلالية في النماذج المدربة مسبقا، مثل بيرت وروبرتا.ومع ذلك، يعتمد هذا النهج على ضبط النماذج الدقيقة الخاصة بالمشكلات، وعلى نطاق واسع، تظهر نماذج BERT-يشبئون الأداء، وهي غير فعالة، عند تطبيقها على مهام مقارنة التشابه غير المدعومة.تم اقتراح الحكم - بيرت (SBERT) كطريقة تضمين عقوبة عامة للأغراض العامة، مناسبة لكل من مقارنة التشابه والمهام المصب.في هذا العمل، نظهر أنه من خلال دمج المعلومات الهيكلية في SBERT، فإن النموذج الناتج يتفوق على SBERTT وتميز الجملة العامة السابقة على مجموعات بيانات التشابه الدلالي غير المنصوص عليها ومهام تصنيف النقل.
تقدم هذه الورقة مجموعة بيانات جديدة للفيديو واللغة مع إجراءات بشرية للاستدلال المنطقي متعدد الوسائط، والتي تركز على التعبيرات المتعمدة وجوقية تصف الإجراءات البشرية الديناميكية.تتكون DataSet من 200 فيديو، 5554 ملصقات عمل، و 1،942 ثلاثة توائم عمل من ال نموذج (الموضوع، المسند، كائن) يمكن ترجمته بسهولة إلى تمثيلات دلالية منطقية.من المتوقع أن تكون DataSet مفيدة لتقييم أنظمة الاستدلال متعددة الوسائط بين مقاطع الفيديو والجمل المعقدة الدلوية بما في ذلك النفي والكمية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا