ترغب بنشر مسار تعليمي؟ اضغط هنا

مجموعات بيانات التقييم التشابه الدلالي عبر اللغات

Evaluation Datasets for Cross-lingual Semantic Textual Similarity

390   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تقدير أنظمة التشابه الدلالي النصي (STS) درجة تشابه معنى بين جملتين.تقدر أنظمة STS عبر اللغات درجة تشابه معنى بين جملتين، كل منها بلغة مختلفة.عادة ما تستخدم الخوارزميات الحديثة عادة نهجا بالغضب بشدة، يصعب استخدامه لغات ضعف الموارد.ومع ذلك، يحتاج أي نهج للحصول على بيانات التقييم لتأكيد النتائج.من أجل تبسيط عملية التقييم لغات ضعف الموارد (من حيث مجموعات بيانات تقييم STS)، نقدم مجموعات بيانات جديدة ل STS عبر اللغات والأحمر غير المباشر لغات دون بيانات التقييم هذه.نقدم أيضا نتائج العديد من الطرق الحديثة على هذه البيانات التي يمكن استخدامها كأساس للحصول على مزيد من البحث.نعتقد أن هذه المقالة لن تمد فقط أبحاث STS الحالية فقط إلى لغات أخرى، ولكنها ستشجع أيضا المنافسة على هذه بيانات التقييم الجديدة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

Rouge هو متري تقييم واسع الاستخدام في تلخيص النص.ومع ذلك، فإنه غير مناسب لتقييم أنظمة تلخيص الجماع حيث تعتمد على التداخل المعجمي بين معيار الذهب والملخصات التي تم إنشاؤها.يصبح هذا القيد أكثر وضوحا للغات الشاقة مع المفردات الكبيرة جدا ونسب عالية النوع / الرمز المميز.في هذه الورقة، نقدم نماذج التشابه الدلالي لأتراك وتطبيقها كقائد تقييم لمهمة تلخيص مبادرة.لتحقيق ذلك، قامنا بترجمة مجموعة بيانات STSB الإنجليزية إلى تركية وعرضت بيانات التشابه الدلالي الأول للتركية أيضا.أظهرنا أن أفضل نماذج التشابه لدينا لها محاذاة أفضل مع الأحكام البشرية المتوسطة مقارنة بالحصان في كل من علاقات بيرسون ورأس.
نقترح طريقة لتقطير معنى المعنى اللاإرادي للغات من تشفير الجملة متعددة اللغات.عن طريق إزالة المعلومات الخاصة باللغة من التضمين الأصلي، نسترجع التضمين الذي يمثله بشكل كامل معنى الجملة.تعتمد الطريقة المقترحة فقط على Corpora الموازي دون أي شروح بشرية.يتي ح Edgedding المعنى لدينا تقدير تشابه تشابه التشابه من خلال حساب التشابه الجيبائي البسيط.النتائج التجريبية على حد كلا تقدير الجودة للترجمة الآلية ومهام التشابه النصي من الدلالات المتبادلة - أن طريقتنا تتفوق باستمرار على خطوط الأساس القوية باستخدام التضمين الأصلي متعدد اللغات.تعمل طريقتنا باستمرار على تحسين أداء أي تشفير جملة متعددة اللغات المدربة مسبقا، حتى في أزواج لغة الموارد المنخفضة حيث تتوفر عشرات الآلاف فقط من أزواج الجملة بالتوازي.
في حين أن تقنيات التبغيات المتبقية تجد نجاحا متزايدا في مجموعة واسعة من مهام معالجة اللغة الطبيعية، فإن تطبيقها على الدورات الدلالية (SRL) كان محدودا بقوة من خلال حقيقة أن كل لغة تعتمد شكليها اللغوي الخاص بها، من Propbank من أجل أنظمة إنجليكزي للإسبا نية و PDT-VALLEX لتشيك، في جملة أمور. في هذا العمل، نتعلم هذه المشكلة وتقديم نموذج موحد لأداء SRL عبر اللغات عبر الموارد اللغوية غير المتجانسة. يتعلم نموذجنا ضمنيا تعيين عالي الجودة من أجل الشكليات المختلفة عبر لغات متنوعة دون اللجوء إلى محاذاة Word وتقنيات الترجمة. نجد ذلك، ليس فقط نظامنا المتبادل لدينا تنافس مع الحالة الحالية للفن ولكنها قوية أيضا على سيناريوهات البيانات المنخفضة. من المثير للاهتمام، من المثير للاهتمام، نموذجنا الموحد قادر على التعليق الجملة في تمريرة واحدة إلى الأمام مع جميع المخزونات التي تم تدريبها عليها، وتوفير أداة لتحليل ومقارنة النظريات اللغوية عبر لغات مختلفة. نطلق سردنا ونموذجنا في https://github.com/sapienzanlp/unify-srl.
يعرض عدم وجود بيانات تدريبية تحديا كبيرا لتحجيم فهم اللغة المنطوقة لغات الموارد المنخفضة.على الرغم من أن نهج تكبير البيانات المختلفة قد اقترحت توليف البيانات التدريبية في لغات مستهدفة منخفضة الموارد، فإن مجموعات البيانات المعززة غالبا ما تكون صاخبة، وبالتالي تعيق أداء نماذج SLU.في هذه الورقة نركز على تخفيف الضوضاء في البيانات المعززة.نقوم بتطوير نهج تدريب Denosising.يتم تدريب نماذج متعددة مع البيانات التي تنتجها الطرق المعززة المختلفة.توفر هذه النماذج إشارات الإشراف لبعضها البعض.تظهر النتائج التجريبية أن أسلوبنا تتفوق على الحالة القائمة من الفن الموجودة بمقدار 3.05 و 4.24 نقطة مئوية عن مجموعات بيانات قياسية على التوالي.سيتم تقديم الرمز مفتوح المصادر على جيثب.
التشابه النّصي الدّلالي هو أساس عدد لا يحصى من التطبيقات ويلعب دوراً هاماً في مجالات متنوعة مثل استرجاع المعلومات ، والكشف عن السرقة الأدبية ، والترجمة الآلية ، وكشف الموضوع ، وتصنيف النص ، وتلخيص النص وغيرها. ويعتمد العثور على التشابه بين نصين أو فقرات أو جمل على قياس التشابه بين الكلمات بشكل مباشر أو غير مباشر. هناك نوعان معروفان للتشابه: معجمية(Lexicon) ودلالية.(Semantic) يتعامل الأوّل مع الكلمات على أنها مجموعة من الأحرف: الكلمات متشابهة معًا إذا كانت تتشارك في نفس الأحرف بنفس الترتيب(تمتلك نفس السلسلة من المحارف). يهدف النوع الثّاني إلى تحديد الدّرجة التي ترتبط بها كلمتين بشكل دلالي على سبيل المثال يمكن أن تكون المرادفات تمثل نفس الشيء أو يتم استخدامها في نفس السياق، ولذلك التّشابه الدّلالي بين الكلمات يجب أن يكون knowledge based وهذا يعني أنّ التشابه بين الكلمتين يعتمد على معلومات يمكن الحصول عليها من معاجم كبيرة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا