ترغب بنشر مسار تعليمي؟ اضغط هنا

ما الذي يجعل مجمع مفهوم؟قياس التعقيد المفاهيمي كسلائف تبسيط النص

What Makes a Concept Complex? Measuring Conceptual Complexity as a Precursor for Text Simplification

262   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

كانت التطورات في مجال تبسيط النص (TS) في المقام الأول ضمن تبسيط النحوية أو المعجمية.ومع ذلك، فقد تم تحديد التبسيط المفاهيمي سابقا كحقل آخر من TS له القدرة على تحسين فهم القراءة بشكل كبير.الخطوة الأولى للقياس التبسيط المفاهيمي هو تصنيف المفاهيم كمعقد أو بسيط.تقترح ورقة البحث في البحث هذه تعريفا جديدا للتعقيد المفاهيمي إلى جانب نهج بسيط لتعلم الآلات التي تنفذ مهمة تصنيف ثنائية للتمييز بين المفاهيم البسيطة والمعقدة.يقترح أن تكون هذه الخطوة الأولى عند تطوير نماذج تبسيط نص جديدة تعمل على مستوى مفاهيمي.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

يتم تقييم تبسيط النص على مستوى الجملة حاليا باستخدام المقاييس الآلية والتقييم البشري.للتقييم التلقائي، عادة ما يتم توظيف مزيج من المقاييس لتقييم الجوانب المختلفة من التبسيط.مستوى الصف Flesch-Kincaid (FKGL) هو مقياس واحد تم استخدامه بانتظام لقياس قابل ية قراءة إخراج النظام.في هذه الورقة، نقول أن FKGL لا ينبغي استخدامها لتقييم أنظمة تبسيط النص.نحن نقدم التحليلات التجريبية على إخراج النظام الأخير الذي يظهر أن درجة FKGL يمكن التلاعب بها بسهولة لتحسين النتيجة بشكل كبير مع تأثير بسيط فقط على مقاييس آلية أخرى (بلو والساري).بدلا من استخدام FKGL، نقترح أن يتم استخدام إحصائيات المكونات، إلى جانب الآخرين، لتحليل posthoc لفهم سلوك النظام.
إن جودة أنظمة تبسيط النص الآلي بالكامل ليست جيدة بما يكفي للاستخدام في إعدادات العالم الحقيقي؛بدلا من ذلك، يتم استخدام التبسيط البشري.في هذه الورقة، ندرس كيفية تحسين تكلفة وجودة التبسيط البشري من خلال الاستفادة من الجماعة الجماعية.نقدم نهج الانصهار ا لجملة في الرسم البياني لزيادة التبسيط البشري ونهج إعادة النشر لكل من تحديد المبسط عالية الجودة والسماح باستهداف التبسيط بمستويات متفاوتة من البساطة.باستخدام DataSet Newsela (XU et al.، 2015) نظهر تحسينات متسقة على الخبراء في مستويات تبسيط مختلفة وتجد أن تبسيط الانصهار الجملة الإضافية تسمح بإخراج أبسط من التبسيط البشري وحدها.
تبسيط النص هو تقنية قيمة.ومع ذلك، يقتصر البحث الحالي على تبسيط الجملة.في هذه الورقة، نحدد والتحقيق في مهمة جديدة من تبسيط نص المستندات على مستوى المستند، والتي تهدف إلى تبسيط وثيقة تتكون من جمل متعددة.بناء على مقالب ويكيبيديا، نقوم أولا ببناء مجموعة بيانات واسعة النطاق تسمى D-Wikipedia وأداء التحليل والتقييم البشري عليه لإظهار أن مجموعة البيانات موثوقة.بعد ذلك، نقترح مقياس تقييم تلقائي جديد يسمى D-SARI هو أكثر ملاءمة لمهمة تبسيط مستوى المستند.أخيرا، نقوم باختيار العديد من النماذج التمثيلية كطرازات أساسية لهذه المهمة وأداء التقييم التلقائي والتقييم البشري.نحن نحلل النتائج وأشرح أوجه القصور في النماذج الأساسية.
وقد لوحظت مفارقة خسارة التعقيد، التي توضح أن الأفراد الذين يعانون من الأمراض من مرض ديناميات سلوكية يمكن التنبؤ بها بشكل مدهش، وقد لوحظ في مجموعة متنوعة من النظم الفسيولوجية البشرية والحيوانية. يعرض ظهور العلاج المستند عبر الإنترنت حديثا فرصة جديدة ل تحليل مفارقة فقدان التعقيد في التشغيل الجديد: فقدان التعقيد اللغوي في محادثات العلاج بالنصوص. في هذه الورقة، نقوم بتحليل التعقيد اللغوي يرتبط بالصحة العقلية في رسائل العلاج عبر الإنترنت المرسلة بين المعالجين و 7170 عملاء قدموا 30،437 ردود للمسح المقابلة على قلقهم. وجدنا أنه عندما أبلغ العملاء المزيد من القلق، أظهروا انخفاض التنوع المعجمي على النحو الذي يقدر بمتوسط ​​نسبة TECE-TECEN المتوسطة. يستخدم المعالجون، من ناحية أخرى، لغة صعوبة في القراءة، التعقيد النحوي، وعمر الاستحواذ عندما كان العملاء أكثر قلقا. أخيرا، وجدنا أن العملاء، وإلى حد كبير، المعالجين، عرضوا مستويات متسقة من العديد من تدابير التعقيد اللغوي. توضح هذه النتائج كيفية الاستفادة من التحليل اللغوي للاتصالات القائمة على النص كعلامة للقلق، وهو احتمال مثير في وقت زيادة الاتصال عبر الإنترنت وزيادة قضايا الصحة العقلية.
في الآونة الأخيرة، حقق نموذج لغوي كبير مدرب مسبقا يسمى T5 (محول نقل النصوص الموحد للنصوص) أداء حديثة في العديد من مهام NLP.ومع ذلك، لم يتم العثور على أي دراسة باستخدام هذا النموذج المدرب مسبقا على تبسيط النص.لذلك في هذه الورقة، نستكشف استخدام T5 Bric k-Tuning على تبسيط النص الجمع بين آلية يمكن التحكم فيها لتنظيم مخرجات النظام التي يمكن أن تساعد في إنشاء نص مكيفات للجماهير المستهدفة المختلفة.تبين تجاربنا أن نموذجنا يحقق نتائج رائعة مع مكاسب بين +0.69 و +1.41 عبر أحدث الولاية الحالية (بارت + الوصول).نقول أن استخدام نموذج مدرب مسبقا مثل T5، المدربين على عدة مهام مع كميات كبيرة من البيانات، يمكن أن يساعد في تحسين تبسيط النص.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا