ترغب بنشر مسار تعليمي؟ اضغط هنا

إدراك العاطفة، العاطفة، الأذرع، أو التلقائي: استراتيجيات إنشاء Corpus للحصول على التعليقات التوضيحية تقييم الحدث المعرفي

Emotion-Aware, Emotion-Agnostic, or Automatic: Corpus Creation Strategies to Obtain Cognitive Event Appraisal Annotations

444   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

توضح نظريات التقييم كيف يؤدي التقييم المعرفي للحدث إلى عاطفة معينة. على النقيض من نظريات المشاعر الأساسية أو التأثير (التكافؤ / الإثارة)، لم تتلق هذه النظرية الكثير من الاهتمام في معالجة اللغة الطبيعية. ومع ذلك، في علم النفس، ثبت أن سميث وإلسنثورث (1985) أظهر أن أبعاد التقييم الاهتمام، اليقين، الجهد المتوقع، والمسؤولية، والمسؤولية السيطرة والتحكم الظرفي تميز بين (على الأقل) 15 فصول العاطفة. ندرس استراتيجيات توضيحية مختلفة لهذه الأبعاد، استنادا إلى كوربوس الفنية التي تركز على الأحداث (Troiano et al.، 2019). نقوم بتحليل اثنين من إعدادات التوضيحية اليدوية: (1) إظهار النص للتعليق أثناء إخفاء ملصق العاطفة ذوي الخبرة؛ (2) الكشف عن العاطفة المرتبطة بالنص. يتيح الإعداد 2 أن يقوم المعلقون بتطوير حدس أكثر واقعية لهذا الحدث الموصوفين، في حين أن الإعداد 1 هو إجراء شروح مزيد من التعريفي، والاعتماد بحت على النص. نقوم بتقييم هذه الاستراتيجيات بطريقتين: من خلال قياس اتفاقية Insine-Annotator وضبط روبرتا للتنبؤ بمتغيرات التقييم. تظهر نتائجنا أن معرفة العاطفة تزيد من موثوقية المعلقين. علاوة على ذلك، نقوم بتقييم استراتيجية وضع العلامات المستندة إلى القواعد التلقائية بحتة (تقييم الاستنتاج من فصول العاطفة المشروحة). يؤدي التدريب على الملصقات المعينة تلقائيا إلى أداء تنافسي من المصنف لدينا، حتى عند اختباره في التوضيحية اليدوية. هذا مؤشر أنه قد يكون من الممكن إنشاء Corpa Corpora تلقائيا لكل مجال موجودا للعاطفة الموجودة بالفعل.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

أصبح التعرف على العاطفة في محادثة متعددة الأحزاب (ermc) شعبية بشكل متزايد كقاعدة بحثية ناشئة في معالجة اللغة الطبيعية.يركز البحث المسبق على استكشاف معلومات متتابعة ولكن يتجاهل هياكل المحادثات.في هذه الورقة، يمكننا التحقيق في أهمية هياكل الخطاب في الت عامل مع الإشارات السياقية الإعلامية والمعلومات الخاصة بالمتكلات الخاصة ب armc.تحقيقا لهذه الغاية، نقترح علما رسميا في رسم بياني (ERMC-DISGCN) ل ERMC.على وجه الخصوص، نقوم بتصميم الأزلاء العلائقية إلى رافعة تبعية المتكلم الذاتي للواقعاء نشر معلومات سياقية.علاوة على ذلك، فإننا نستنفذ عن مراقبة بوابات لاختيار إشارات أكثر إفادة ل armc من التحويلات المعالين.تظهر النتائج التجريبية طريقة أن أسلوبنا تتفوق على خطوط أساس متعددة، مما يوضح أن هياكل الخطاب ذات قيمة كبيرة ل armc.
كلمات الأغاني تنقل العديد من المشاعر إلى المستمع وصور بقوة الحالة العاطفية للكاتب أو المغني.يفحص هذه الورقة مجموعة متنوعة من نهج النمذجة لمشكلة تصنيف متعددة العاطفة للأغاني.نقدم DataSet DataSet Edmonds DataSet، وهي كلمات بيانات كلمات مشفخة عن العاطفة من منظور القارئ، وتعليق DataSet of Mihalcea و Stripparava (2012) على مستوى الأغنية.نجد أن النماذج المدربة على مجموعات بيانات الأغنية الصغيرة نسبيا تحقق أداء أفضل بشكل هامشي من بيرت (ديفلين وآخرون)
نقدم نموذجا للتنبؤ بمشاعر غرامة على طول الأبعاد المستمرة من التكافؤ والإثارة والهيمنة (VAD) مع وجود شرح عاطفي قاطع. يتم تدريب طرازنا عن طريق تقليل فقدان EMD (مسافة تحالف الأرض) بين توزيع النتيجة VAD المتوقعة وتوزيع العاطفة الفئوية التي تم فرزها على ط ول VAD، ويمكن أن تصنف في وقت واحد فئات العاطفة وتتنبؤ بعشرات VAD للحصول على عقوبة معينة. نحن نستخدم Roberta-Large Roberta المدربة مسبقا على ثلاثة كوربورا مختلفة مع ملصقات واضحة وتقييم على Emobank Corpus مع درجات VAD. نظهر أن نهجنا يصل إلى أداء قابلا للمقارنة مع وجود أحدث من المصنفات في تصنيف العاطفة الفئوية ويظهر ارتباطا إيجابيا كبيرا مع درجات فاد للحقيقة الأرضية. أيضا، يؤدي المزيد من التدريب مع الإشراف على تسميات VAD إلى تحسين الأداء خاصة عندما تكون مجموعة البيانات الصغيرة. نقدم أيضا أمثلة على تنبؤات كلمات العاطفة المناسبة التي ليست جزءا من التعليقات التوضيحية الأصلية.
عندما يحكم البشر على المحتوى العاطفي للنصوص، فإنها تقوم أيضا بتقييم صحة هذا الحكم أيضا ضمنيا، وهذا هو ثقتهم. نحن نفترض أن ثقة الناس (في) الذين أدوا جيدا في مهمة شرح يؤدي إلى اتفاقيات (ديس) بين بعضها البعض. إذا كان هذا صحيحا، فقد تعمل الثقة كأداة تشخي صية للفروق المنهجية في التعليقات التوضيحية. لتحقيق افتراضنا، نقوم بإجراء دراسة فرعية من جمعية اللغة الإنجليزية الأمريكية المعاصرة، والتي نطلب فيها أن نلتزم بالتمييز الجمل المحايدة من المشاعر، مع تسجيل ثقة إجاباتهم. تبين الثقة لتقريب الخلافات المعتارية. علاوة على ذلك، نجد أن الثقة مرتبطة بشدة العاطفة: إدراك التأثير الأقوى في النص يطالب المعلقون إلى مزيد من عروض التصنيف أكثر. هذه البصيرة ذات صلة بدراسات النمذجة من شدة الشدة، حيث تفتح السؤال الريادة أو المصنفين التلقائيين في الواقع تنبأوا بشدة، أو ثقة الإنسان المتصورة بالأحرى.
في النشر، يجب أن تستخدم النظم التي تستخدم الكلام كمدخلات من النسخ الآلي.ومع ذلك، عادة عندما يتم تقييم هذه الأنظمة، يفترض أن نسخ الذهب.نحن ندرس صراحة تأثير أخطاء النسخ على الأداء المصاب لنظام متعدد الوسائط على ثلاثة مهام ذات صلة من ثلاث مجموعات بيانات : المشاعر والتهكية والكشف عن الشخصية.نضم ثلاثة أدوات نسخ منفصلة وإظهار أنه في حين أن جميع عمليات النسخ الآلية تنتشر أخطاء تؤثر بشكل كبير على أداء المصب، فإن أدوات المصدر المفتوح هي أسوأ من الأداة المدفوعة، على الرغم من أنها ليست دائما بشكل مباشر، ومعدلات خطأ Word لا ترتبط بشكل جيد مع أداء المصب.نجد كذلك أن إدراج ميزات الصوت يخفف جزئيا أخطاء النسخ، ولكن أن الاستخدام السذاجة لإعداد متعددة المهام لا.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا