أظهرت أنظمة الكشف عن اللغة المسيئة الحالية التحيز غير المقصود تجاه ميزات حساسة مثل الجنسية أو الجنس. هذه قضية حاسمة، والتي قد تؤذي الأقليات والجماعات الممثلة تمثيلا ناقصا إذا تم دمج هذه الأنظمة في تطبيقات العالم الحقيقي. في هذه الورقة، نقوم بإنشاء اختبارات مخصصة من خلال أداة قائمة المراجعة (Ribeiro et al.، 2020) للكشف عن التحيزات داخل مصنفات اللغة المسيئة للغة الإنجليزية. نقارن سلوك نماذج استنادتين في بيرت، واحد مدرب على مجموعة بيانات الكلام الكراهية العامة والآخر في مجموعة بيانات للكشف عن الحرج. يوضح تقييمنا أنه على الرغم من أن المصنفات القائمة على بيرت تحقق مستويات عالية الدقة على مجموعة متنوعة من مهام معالجة اللغة الطبيعية، فإنها تؤدي بشكل سيء للغاية فيما يتعلق بالإنصاف والتحيز، لا سيما بشأن العينات التي تنطوي على الصور النمطية الضمنية، وتعبيرات عن الكراهية نحو الأقليات والسمات المحمية كما العرق أو الميل الجنسي. نطلق سراح كل من أجهزة الكمبيوتر المحمولة المنفذة لتوسيع اختبارات الإنصاف ومجموعات البيانات الاصطناعية التي يمكن استخدامها لتقييم تنظيم الأنظمة بشكل مستقل عن قائمة المراجعة.
Current abusive language detection systems have demonstrated unintended bias towards sensitive features such as nationality or gender. This is a crucial issue, which may harm minorities and underrepresented groups if such systems were integrated in real-world applications. In this paper, we create ad hoc tests through the CheckList tool (Ribeiro et al., 2020) to detect biases within abusive language classifiers for English. We compare the behaviour of two BERT-based models, one trained on a generic hate speech dataset and the other on a dataset for misogyny detection. Our evaluation shows that, although BERT-based classifiers achieve high accuracy levels on a variety of natural language processing tasks, they perform very poorly as regards fairness and bias, in particular on samples involving implicit stereotypes, expressions of hate towards minorities and protected attributes such as race or sexual orientation. We release both the notebooks implemented to extend the Fairness tests and the synthetic datasets usable to evaluate systems bias independently of CheckList.
المراجع المستخدمة
https://aclanthology.org/
تبلغ نماذج الكشف عن اللغة المسيئة للحكومة الأمريكية أداء كبير في Corpus، ولكن أداء الفضل عند تقييم التعليقات المسيئة التي تختلف عن سيناريو التدريب.نظرا لأن الشروح البشرية ينطوي على وقت وجهد كبير، فإن النماذج التي يمكن أن تتكيف مع التعليقات التي تم جم
نظرا لأن النهج القائم على المعجم هو أكثر أناقة علميا، أوضح مكونات الحل وأسهل التعميم إلى التطبيقات الأخرى، توفر هذه الورقة نهجا جديدا للغة الهجومية والكشف عن الكلام على وسائل التواصل الاجتماعي، والتي تجسد معجم من الهجوم الضمني والبريثوإقتصار التعبيرا
أصبح الكشف عن اللغة المسيئة أداة مهمة لزراعة منصات آمنة عبر الإنترنت.نحن نبحث في تفاعل جودة التوضيحية وأداء المصنف.نحن نستخدم مخطط توضيحي جديد وحبوس جديد يتيح لنا التمييز بين اللغة المسيئة والاستخدامات العامية للغالبية غير المقصود ضررا.تظهر نتائجنا م
نقدم HATEBERT، نموذج BERT الذي تم تدريبه على إعادة تدريب للكشف عن اللغة المسيئة باللغة الإنجليزية.تم تدريب النموذج على RAL-E، وهي مجموعة بيانات واسعة النطاق من تعليقات Reddit باللغة الإنجليزية من المجتمعات المحظورة لكونها مسيئة أو بغيضة حيث قمنا بإتا
كما تصبح لغة غير مقبولة اجتماعيا منتشرة في منصات وسائل التواصل الاجتماعي، أصبحت الحاجة إلى اعتدال المحتوى التلقائي أكثر إلحاحا.تقدم هذه المساهمة كوربوس اللغة المسيئة الهولندية (DALC V1.0)، وهي مجموعة بيانات جديدة مع تغريدات يدويا للغة المسيئة.إن مزين