ﻻ يوجد ملخص باللغة العربية
A complementary group to SU(n) is found that realizes all features of the Littlewood rule for Kronecker products of SU(n) representations. This is accomplished by considering a state of SU(n) to be a special Gelfand state of the complementary group {cal U}(2n-2). The labels of {cal U}(2n-2) can be used as the outer multiplicity labels needed to distinguish multiple occurrences of irreducible representations (irreps) in the SU(n)times SU(n)downarrow SU(n) decomposition that is obtained from the Littlewood rule. Furthermore, this realization can be used to determine SU(n)supset SU(n-1)times U(1) Reduced Wigner Coefficients (RWCs) and Clebsch-Gordan Coefficients (CGCs) of SU(n), using algebraic or numeric methods, in either the canonical or a noncanonical basis. The method is recursive in that it uses simpler RWCs or CGCs with one symmetric irrep in conjunction with standard recoupling procedures. New explicit formulae for the multiplicity for SU(3) and SU(4) are used to illustrate the theory.
A general procedure for the derivation of SU(3)supset U(2) reduced Wigner coefficients for the coupling (lambda_{1}mu_{1})times (lambda_{2}mu_{2})downarrow (lambdamu)^{eta}, where eta is the outer multiplicity label needed in the decomposition, is pr
A scheme to perform the Cartan decomposition for the Lie algebra su(N) of arbitrary finite dimensions is introduced. The schme is based on two algebraic structures, the conjugate partition and the quotient algebra, that are easily generated by a Cart
We propose a lattice model for two-dimensional SU(N) N=(2,2) super Yang-Mills model. We start from the CKKU model for this system, which is valid only for U(N) gauge group. We give a reduction of U(1) part keeping a part of supersymmetry. In order to
The resonant eigenmodes of a nitrogen-implanted iron {alpha}-FeN characterized by weak stripe domains are investigated by Brillouin light scattering and broadband ferromagnetic resonance experiments, assisted by micromagnetic simulations. The spectru
Building on advanced results on permutations, we show that it is possible to construct, for each irreducible representation of SU(N), an orthonormal basis labelled by the set of {it standard Young tableaux} in which the matrix of the Heisenberg SU(N)