ﻻ يوجد ملخص باللغة العربية
A general procedure for the derivation of SU(3)supset U(2) reduced Wigner coefficients for the coupling (lambda_{1}mu_{1})times (lambda_{2}mu_{2})downarrow (lambdamu)^{eta}, where eta is the outer multiplicity label needed in the decomposition, is proposed based on a recoupling approach according to the complementary group technique given in (I). It is proved that the non-multiplicity-free reduced Wigner coefficients of SU(n) are not unique with respect to canonical outer multiplicity labels, and can be transformed from one set of outer multiplicity labels to another. The transformation matrices are elements of SO(m), where m is the number of occurrence of the corresponding irrep (lambdamu) in the decomposition (lambda_{1}mu_{1})times (lambda_{2}mu_{2})downarrow (lambdamu). Thus, a kind of the reduced Wigner coefficients with multiplicity is obtained after a special SO(m) transformation. New features of this kind of reduced Wigner coefficients and the differences from the reduced Wigner coefficients with other choice of the multiplicity label given previously are discussed. The method can also be applied to the derivation of general SU(n) Wigner or reduced Wigner coefficients with multiplicity. Algebraic expression of another kind of reduced Wigner coefficients, the so-called reduced auxiliary Wigner coefficients for SU(3)supset U(2), are also obtained.
A complementary group to SU(n) is found that realizes all features of the Littlewood rule for Kronecker products of SU(n) representations. This is accomplished by considering a state of SU(n) to be a special Gelfand state of the complementary group {
We study the left-right asymmetric model based on SU(3)_C otimes SU(2)_L otimes SU(3)_R otimes U(1)_X gauge group, which improves the theoretical and phenomenological aspects of the known left-right symmetric model. This new gauge symmetry yields tha
A scheme to perform the Cartan decomposition for the Lie algebra su(N) of arbitrary finite dimensions is introduced. The schme is based on two algebraic structures, the conjugate partition and the quotient algebra, that are easily generated by a Cart
The models with the gauge group $SU(3)_ctimes SU(3)_L times U(1)_X$ (331-models) have been advocated to explain why there are three fermion generations in Nature. As such they can provide partial understanding of the flavour sector. The hierarchy of
We present an algorithm for the explicit numerical calculation of SU(N) and SL(N,C) Clebsch-Gordan coefficients, based on the Gelfand-Tsetlin pattern calculus. Our algorithm is well-suited for numerical implementation; we include a computer code in a