ترغب بنشر مسار تعليمي؟ اضغط هنا

How to Calculate the Exponential of Matrices

117   0   0.0 ( 0 )
 نشر من قبل Kazuyuki Fujii
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

How to calculate the exponential of matrices in an explicit manner is one of fundamental problems in almost all subjects in Science. Especially in Mathematical Physics or Quantum Optics many problems are reduced to this calculation by making use of some approximations whether they are appropriate or not. However, it is in general not easy. In this paper we give a very useful formula which is both elementary and getting on with computer.



قيم البحث

اقرأ أيضاً

100 - Gilad Gour , Andreas Winter 2019
We show that the generalization of the relative entropy of a resource from states to channels is not unique, and there are at least six such generalizations. We then show that two of these generalizations are asymptotically continuous, satisfy a vers ion of the asymptotic equipartition property, and their regularizations appear in the power exponent of channe
Using the proposed by us thinning approach to describe extreme matrices, we find an explicit exponentiation formula linking classical extreme laws of Frechet, Gumbel and Weibull given by Fisher-Tippet-Gnedenko classification and free extreme laws of free Frechet, free Gumbel and free Weibull by Ben Arous and Voiculescu [1]. We also develop an extreme random matrix formalism, in which refined questions about extreme matrices can be answered. In particular, we demonstrate explicit calculations for several more or less known random matrix ensembles, providing examples of all three free extreme laws. Finally, we present an exact mapping, showing the equivalence of free extreme laws to the Peak-Over-Threshold method in classical probability.
We study various methods to generate ensembles of random density matrices of a fixed size N, obtained by partial trace of pure states on composite systems. Structured ensembles of random pure states, invariant with respect to local unitary transforma tions are introduced. To analyze statistical properties of quantum entanglement in bi-partite systems we analyze the distribution of Schmidt coefficients of random pure states. Such a distribution is derived in the case of a superposition of k random maximally entangled states. For another ensemble, obtained by performing selective measurements in a maximally entangled basis on a multi--partite system, we show that this distribution is given by the Fuss-Catalan law and find the average entanglement entropy. A more general class of structured ensembles proposed, containing also the case of Bures, forms an extension of the standard ensemble of structureless random pure states, described asymptotically, as N to infty, by the Marchenko-Pastur distribution.
176 - Jia-wen Deng , Uwe Guenther , 2012
Three ways of constructing a non-Hermitian matrix with possible all real eigenvalues are discussed. They are PT symmetry, pseudo-Hermiticity, and generalized PT symmetry. Parameter counting is provided for each class. All three classes of matrices ha ve more real parameters than a Hermitian matrix with the same dimension. The generalized PT-symmetric matrices are most general among the three. All self-adjoint matrices process a generalized PT symmetry. For a given matrix, it can be both PT-symmetric and P-pseudo-Hermitian with respect to some P operators. The relation between corresponding P and P operators is established. The Jordan block structures of each class are discussed. Explicit examples in 2x2 are shown.
Random unitary matrices find a number of applications in quantum information science, and are central to the recently defined boson sampling algorithm for photons in linear optics. We describe an operationally simple method to directly implement Haar random unitary matrices in optical circuits, with no requirement for prior or explicit matrix calculations. Our physically-motivated and compact representation directly maps independent probability density functions for parameters in Haar random unitary matrices, to optical circuit components. We go on to extend the results to the case of random unitaries for qubits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا