ترغب بنشر مسار تعليمي؟ اضغط هنا

General PT-Symmetric Matrices

176   0   0.0 ( 0 )
 نشر من قبل Qing-hai Wang
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Three ways of constructing a non-Hermitian matrix with possible all real eigenvalues are discussed. They are PT symmetry, pseudo-Hermiticity, and generalized PT symmetry. Parameter counting is provided for each class. All three classes of matrices have more real parameters than a Hermitian matrix with the same dimension. The generalized PT-symmetric matrices are most general among the three. All self-adjoint matrices process a generalized PT symmetry. For a given matrix, it can be both PT-symmetric and P-pseudo-Hermitian with respect to some P operators. The relation between corresponding P and P operators is established. The Jordan block structures of each class are discussed. Explicit examples in 2x2 are shown.



قيم البحث

اقرأ أيضاً

The dilation method is an important and useful way in experimentally simulating non-Hermitian, especially $cal PT$-symmetric systems. However, the time dependent dilation problem cannot be explicitly solved in general. In this paper, we consider a sp ecial two dimensional time dependent $cal PT$-symmetric system, which is initially set in the unbroken $cal PT$-symmetric phase and later goes across the exceptional point and enters the broken $cal PT$-symmetric phase. For this system, the dilation Hamiltonian and the evolution of $cal PT$-symmetric system are analytically worked out.
Suppose that a system is known to be in one of two quantum states, $|psi_1 > $ or $|psi_2 >$. If these states are not orthogonal, then in conventional quantum mechanics it is impossible with one measurement to determine with certainty which state the system is in. However, because a non-Hermitian PT-symmetric Hamiltonian determines the inner product that is appropriate for the Hilbert space of physical states, it is always possible to choose this inner product so that the two states $|psi_1 > $ and $|psi_2 > $ are orthogonal. Thus, quantum state discrimination can, in principle, be achieved with a single measurement.
We theoretically demonstrate soliton steering in $mathcal{PT}$-symmetric coupled nonlinear dimers. We show that if the length of the $mathcal{PT}$-symmetric system is set to $2pi$ contrary to the conventional one which operates satisfactorily well on ly at the half-beat coupling length, the $mathcal{PT}$ dimer remarkably yields an ideal soliton switch exhibiting almost 99.99% energy efficiency with an ultra-low critical power.
We consider the linear and nonlinear Schrodinger equation for a Bose-Einstein condensate in a harmonic trap with $cal {PT}$-symmetric double-delta function loss and gain terms. We verify that the conditions for the applicability of a recent propositi on by Mityagin and Siegl on singular perturbations of harmonic oscillator type self-adjoint operators are fulfilled. In both the linear and nonlinear case we calculate numerically the shifts of the unperturbed levels with quantum numbers $n$ of up to 89 in dependence on the strength of the non-Hermiticity and compare with rigorous estimates derived by those authors. We confirm that the predicted $1/n^{1/2}$ estimate provides a valid upper bound on the the shrink rate of the numerical eigenvalues. Moreover, we find that a more recent estimate of $log(n)/n^{3/2}$ is in excellent agreement with the numerical results. With nonlinearity the shrink rates are found to be smaller than without nonlinearity, and the rigorous estimates, derived only for the linear case, are no longer applicable.
Linear polarimetric transformations of light polarization states by the action of material media are fully characterized by the corresponding Mueller matrices, which contain in an implicit and intricate manner all measurable information on such trans formations. The general characterization of Mueller matrices relies on the nonnegativity of the associated coherency matrix, which can be mathematically formulated through the nonnegativity of its eigenvalues. The enormously involved explicit algebraic form of such formulation prevents its interpretation in terms of simple physical conditions. In this work, a general and simple characterization of Mueller matrices is presented based on their statistical structure. The concepts associated with the retardance, enpolarization and depolarization properties as well as the essential coupling between the two later are directly described in the light of the new approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا