ﻻ يوجد ملخص باللغة العربية
Three ways of constructing a non-Hermitian matrix with possible all real eigenvalues are discussed. They are PT symmetry, pseudo-Hermiticity, and generalized PT symmetry. Parameter counting is provided for each class. All three classes of matrices have more real parameters than a Hermitian matrix with the same dimension. The generalized PT-symmetric matrices are most general among the three. All self-adjoint matrices process a generalized PT symmetry. For a given matrix, it can be both PT-symmetric and P-pseudo-Hermitian with respect to some P operators. The relation between corresponding P and P operators is established. The Jordan block structures of each class are discussed. Explicit examples in 2x2 are shown.
The dilation method is an important and useful way in experimentally simulating non-Hermitian, especially $cal PT$-symmetric systems. However, the time dependent dilation problem cannot be explicitly solved in general. In this paper, we consider a sp
Suppose that a system is known to be in one of two quantum states, $|psi_1 > $ or $|psi_2 >$. If these states are not orthogonal, then in conventional quantum mechanics it is impossible with one measurement to determine with certainty which state the
We theoretically demonstrate soliton steering in $mathcal{PT}$-symmetric coupled nonlinear dimers. We show that if the length of the $mathcal{PT}$-symmetric system is set to $2pi$ contrary to the conventional one which operates satisfactorily well on
We consider the linear and nonlinear Schrodinger equation for a Bose-Einstein condensate in a harmonic trap with $cal {PT}$-symmetric double-delta function loss and gain terms. We verify that the conditions for the applicability of a recent propositi
Linear polarimetric transformations of light polarization states by the action of material media are fully characterized by the corresponding Mueller matrices, which contain in an implicit and intricate manner all measurable information on such trans