ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Implementation of Constraints through Projection Operators

304   0   0.0 ( 0 )
 نشر من قبل Achim Kempf
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum constraints of the type Q psi = 0 can be straightforwardly implemented in cases where Q is a self-adjoint operator for which zero is an eigenvalue. In that case, the physical Hilbert space is obtained by projecting onto the kernel of Q, i.e. H_phys = ker(Q) = ker(Q*). It is, however, nontrivial to identify and project onto H_phys when zero is not in the point spectrum but instead is in the continuous spectrum of Q, because in this case the kernel of Q is empty. Here, we observe that the topology of the underlying Hilbert space can be harmlessly modified in the direction perpendicular to the constraint surface in such a way that Q becomes non-self-adjoint. This procedure then allows us to conveniently obtain H_phys as the proper Hilbert subspace H_phys = ker(Q*), on which one can project as usual. In the simplest case, the necessary change of topology amounts to passing from an L^2 Hilbert space to a Sobolev space.



قيم البحث

اقرأ أيضاً

76 - F. Cannata 1998
General first- and higher-order intertwining relations between non-stationary one-dimensional Schrodinger operators are introduced. For the first-order case it is shown that the intertwining relations imply some hidden symmetry which in turn results in a $R$-separation of variables. The Fokker-Planck and diffusion equation are briefly considered. Second-order intertwining operators are also discussed within a general approach. However, due to its complicated structure only particular solutions are given in some detail.
We consider relativistic coherent states for a spin-0 charged particle that satisfy the next additional requirements: (i) the expected values of the standard coordinate and momentum operators are uniquely related to the real and imaginary parts of th e coherent state parameter; (ii) these states contain only one charge component. Three cases are considered: free particle, relativistic rotator, and particle in a constant homogeneous magnetic field. For the rotational motion of the two latter cases, such a description leads to the appearance of the so-called nonlinear coherent states.
In this paper we revisit the isomorphism $SU(2)otimes SU(2)cong SO(4)$ to apply to some subjects in Quantum Computation and Mathematical Physics. The unitary matrix $Q$ by Makhlin giving the isomorphism as an adjoint action is studied and generaliz ed from a different point of view. Some problems are also presented. In particular, the homogeneous manifold $SU(2n)/SO(2n)$ which characterizes entanglements in the case of $n=2$ is studied, and a clear-cut calculation of the universal Yang-Mills action in (hep-th/0602204) is given for the abelian case.
A minimal set of measurement operators for quantum state tomography has in the non-degenerate case ideally eigenbases which are mutually unbiased. This is different for the degenerate case. Here, we consider the situation where the measurement operat ors are projections on individual pure quantum states. This corresponds to maximal degeneracy. We present numerically optimized sets of projectors and find that they significantly outperform those which are taken from a set of mutually unbiased bases.
Out-of-time-order (OTO) operators have recently become popular diagnostics of quantum chaos in many-body systems. The usual way they are introduced is via a quantization of classical Lyapunov growth, which measures the divergence of classical traject ories in phase space due to the butterfly effect. However, it is not obvious how exactly they capture the sensitivity of a quantum system to its initial conditions beyond the classical limit. In this paper, we analyze sensitivity to initial conditions in the quantum regime by recasting OTO operators for many-body systems using various formulations of quantum mechanics. Notably, we utilize the Wigner phase space formulation to derive an $hbar$-expansion of the OTO operator for spatial degrees of freedom, and a large spin $1/s$-expansion for spin degrees of freedom. We find in each case that the leading term is the Lyapunov growth for the classical limit of the system and argue that quantum corrections become dominant at around the scrambling time, which is also when we expect the OTO operator to saturate. We also express the OTO operator in terms of propagators and see from a different point of view how it is a quantum generalization of the divergence of classical trajectories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا