ﻻ يوجد ملخص باللغة العربية
We consider relativistic coherent states for a spin-0 charged particle that satisfy the next additional requirements: (i) the expected values of the standard coordinate and momentum operators are uniquely related to the real and imaginary parts of the coherent state parameter; (ii) these states contain only one charge component. Three cases are considered: free particle, relativistic rotator, and particle in a constant homogeneous magnetic field. For the rotational motion of the two latter cases, such a description leads to the appearance of the so-called nonlinear coherent states.
To simulate a quantum system with continuous degrees of freedom on a quantum computer based on quantum digits, it is necessary to reduce continuous observables (primarily coordinates and momenta) to discrete observables. We consider this problem base
This paper examines the nature of classical correspondence in the case of coherent states at the level of quantum trajectories. We first show that for a harmonic oscillator, the coherent state complex quantum trajectories and the complex classical tr
We give a quantum mechanical description of accelerated relativistic particles in the framework of Coherent States (CS) of the (3+1)-dimensional conformal group SU(2,2), with the role of accelerations played by special conformal transformations and w
We study truncated Bose operators in finite dimensional Hilbert spaces. Spin coherent states for the truncated Bose operators and canonical coherent states for Bose operators are compared. The Lie algebra structure and the spectrum of the truncated Bose operators are discussed.
Quantum constraints of the type Q psi = 0 can be straightforwardly implemented in cases where Q is a self-adjoint operator for which zero is an eigenvalue. In that case, the physical Hilbert space is obtained by projecting onto the kernel of Q, i.e.