ﻻ يوجد ملخص باللغة العربية
I derive a tight bound between the quality of estimating the state of a single copy of a $d$-level system, and the degree the initial state has to be altered in course of this procedure. This result provides a complete analytical description of the quantum mechanical trade-off between the information gain and the quantum state disturbance expressed in terms of mean fidelities. I also discuss consequences of this bound for quantum teleportation using nonmaximally entangled states.
Understanding how to tailor quantum dynamics to achieve a desired evolution is a crucial problem in almost all quantum technologies. We present a very general method for designing high-efficiency control sequences that are always fully compatible wit
We propose $mathrm{SQiSW}$, the matrix square root of the standard $mathrm{iSWAP}$ gate, as a native two-qubit gate for superconducting quantum computing. We show numerically that it has potential for an ultra-high fidelity implementation as its gate
We present a new and simplified two-qubit randomized benchmarking procedure that operates only in the symmetric subspace of a pair of qubits and is well suited for benchmarking trapped-ion systems. By performing benchmarking only in the symmetric sub
We analyze the average fidelity (say, F) and the fidelity deviation (say, D) in noisy-channel quantum teleportation. Here, F represents how well teleportation is performed on average and D quantifies whether the teleportation is performed impartially
When scheduling quantum operations, a shorter overall execution time of the resulting schedule yields a better throughput and higher fidelity output. In this paper, we demonstrate that quantum operation scheduling can be interpreted as a special type