ﻻ يوجد ملخص باللغة العربية
When scheduling quantum operations, a shorter overall execution time of the resulting schedule yields a better throughput and higher fidelity output. In this paper, we demonstrate that quantum operation scheduling can be interpreted as a special type of job-shop problem. On this basis, we provide its formulation as Constraint Programming while taking into account commutation between quantum operations. We show that this formulation improves the overall execution time of the resulting schedules in practice through experiments with a real quantum compiler and quantum circuits from two common benchmark sets.
A quantum computer consists of a set of quantum bits upon which operations called gates are applied to perform computations. In order to perform quantum algorithms, physicists would like to design arbitrary gates to apply to quantum bits. However, th
I derive a tight bound between the quality of estimating the state of a single copy of a $d$-level system, and the degree the initial state has to be altered in course of this procedure. This result provides a complete analytical description of the q
Quantum error correction is vital for implementing universal quantum computing. A key component is the encoding circuit that maps a product state of physical qubits into the encoded multipartite entangled logical state. Known methods are typically no
We prove a general limitation in quantum information that unifies the impossibility principles such as no-cloning and no-anticloning. Further, we show that for an unknown qubit one cannot design a universal Hadamard gate for creating equal superposit
We study the possibility for a global unitary applied on an arbitrary number of qubits to be decomposed in a sequential unitary procedure, where an ancillary system is allowed to interact only once with each qubit. We prove that sequential unitary de