ﻻ يوجد ملخص باللغة العربية
We introduce a model of proportional growth to explain the distribution $P(g)$ of business firm growth rates. The model predicts that $P(g)$ is Laplace in the central part and depicts an asymptotic power-law behavior in the tails with an exponent $zeta=3$. Because of data limitations, previous studies in this field have been focusing exclusively on the Laplace shape of the body of the distribution. We test the model at different levels of aggregation in the economy, from products, to firms, to countries, and we find that the its predictions are in good agreement with empirical evidence on both growth distributions and size-variance relationships.
We introduce a model of proportional growth to explain the distribution of business firm growth rates. The model predicts that the distribution is exponential in the central part and depicts an asymptotic power-law behavior in the tails with an expon
Generalized preferential attachment is defined as the tendency of a vertex to acquire new links in the future with respect to a particular vertex property. Understanding which properties influence link acquisition tendency (LAT) gives us a predictive
We introduce a two-dimensional growth model where every new site is located, at a distance $r$ from the barycenter of the pre-existing graph, according to the probability law $1/r^{2+alpha_G} (alpha_G ge 0)$, and is attached to (only) one pre-existin
We introduce a network growth model in which the preferential attachment probability includes the fitness vertex and the Euclidean distance between nodes. We grow a planar network around its barycenter. Each new site is fixed in space by obeying a power law distribution.
In the Yule-Simon process, selection of words follows the preferential attachment mechanism, resulting in the power-law growth in the cumulative number of individual word occurrences. This is derived using mean-field approximation, assuming a continu