ترغب بنشر مسار تعليمي؟ اضغط هنا

A Generalized Preferential Attachment Model for Business Firms Growth Rates: I. Empirical Evidence

63   0   0.0 ( 0 )
 نشر من قبل Dongfeng Fu
 تاريخ النشر 2006
  مجال البحث فيزياء مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a model of proportional growth to explain the distribution $P(g)$ of business firm growth rates. The model predicts that $P(g)$ is Laplace in the central part and depicts an asymptotic power-law behavior in the tails with an exponent $zeta=3$. Because of data limitations, previous studies in this field have been focusing exclusively on the Laplace shape of the body of the distribution. We test the model at different levels of aggregation in the economy, from products, to firms, to countries, and we find that the its predictions are in good agreement with empirical evidence on both growth distributions and size-variance relationships.



قيم البحث

اقرأ أيضاً

We introduce a model of proportional growth to explain the distribution of business firm growth rates. The model predicts that the distribution is exponential in the central part and depicts an asymptotic power-law behavior in the tails with an expon ent 3. Because of data limitations, previous studies in this field have been focusing exclusively on the Laplace shape of the body of the distribution. In this article, we test the model at different levels of aggregation in the economy, from products to firms to countries, and we find that the models predictions agree with empirical growth distributions and size-variance relationships.
Generalized preferential attachment is defined as the tendency of a vertex to acquire new links in the future with respect to a particular vertex property. Understanding which properties influence link acquisition tendency (LAT) gives us a predictive power to estimate the future growth of network and insight about the actual dynamics governing the complex networks. In this study, we explore the effect of age and degree on LAT by analyzing data collected from a new complex-network growth dataset. We found that LAT and degree of a vertex are linearly correlated in accordance with previous studies. Interestingly, the relation between LAT and age of a vertex is found to be in conflict with the known models of network growth. We identified three different periods in the networks lifetime where the relation between age and LAT is strongly positive, almost stationary and negative correspondingly.
We introduce a two-dimensional growth model where every new site is located, at a distance $r$ from the barycenter of the pre-existing graph, according to the probability law $1/r^{2+alpha_G} (alpha_G ge 0)$, and is attached to (only) one pre-existin g site with a probability $propto k_i/r^{alpha_A}_i (alpha_A ge 0$; $k_i$ is the number of links of the $i^{th}$ site of the pre-existing graph, and $r_i$ its distance to the new site). Then we numerically determine that the probability distribution for a site to have $k$ links is asymptotically given, for all values of $alpha_G$, by $P(k) propto e_q^{-k/kappa}$, where $e_q^x equiv [1+(1-q)x]^{1/(1-q)}$ is the function naturally emerging within nonextensive statistical mechanics. The entropic index is numerically given (at least for $alpha_A$ not too large) by $q = 1+(1/3) e^{-0.526 alpha_A}$, and the characteristic number of links by $kappa simeq 0.1+0.08 alpha_A$. The $alpha_A=0$ particular case belongs to the same universality class to which the Barabasi-Albert model belongs. In addition to this, we have numerically studied the rate at which the average number of links $<k_i>$ increases with the scaled time $t/i$; asymptotically, $<k_i > propto (t/i)^beta$, the exponent being close to $beta={1/2}(1-alpha_A)$ for $0 le alpha_A le 1$, and zero otherwise. The present results reinforce the conjecture that the microscopic dynamics of nonextensive systems typically build (for instance, in Gibbs $Gamma$-space for Hamiltonian systems) a scale-free network.
We introduce a network growth model in which the preferential attachment probability includes the fitness vertex and the Euclidean distance between nodes. We grow a planar network around its barycenter. Each new site is fixed in space by obeying a power law distribution.
341 - Yasuhiro Hashimoto 2015
In the Yule-Simon process, selection of words follows the preferential attachment mechanism, resulting in the power-law growth in the cumulative number of individual word occurrences. This is derived using mean-field approximation, assuming a continu um limit of both the time and number of word occurrences. However, time and word occurrences are inherently discrete in the process, and it is natural to assume that the cumulative number of word occurrences has a certain fluctuation around the average behavior predicted by the mean-field approximation. We derive the exact and approximate forms of the probability distribution of such fluctuation analytically and confirm that those probability distributions are well supported by the numerical experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا