ﻻ يوجد ملخص باللغة العربية
A new approach to describing correlation properties of complex dynamic systems with long-range memory based on a concept of additive Markov chains (Phys. Rev. E 68, 061107 (2003)) is developed. An equation connecting a memory function of the chain and its correlation function is presented. This equation allows reconstructing the memory function using the correlation function of the system. Thus, we have elaborated a novel method to generate a sequence with prescribed correlation function. Effectiveness and robustness of the proposed method is demonstrated by simple model examples. Memory functions of concrete coarse-grained literary texts are found and their universal power-law behavior at long distances is revealed.
A theory of additive Markov chains with long-range memory, proposed earlier in Phys. Rev. E 68, 06117 (2003), is developed and used to describe statistical properties of long-range correlated systems. The convenient characteristics of such systems, a
The neuromagnetic activity (magnetoencephalogram, MEG) from healthy human brain and from an epileptic patient against chromatic flickering stimuli has been earlier analyzed on the basis of a memory functions formalism (MFF). Information measures of m
We consider a sequence of additive functionals {phi_n}, set on a sequence of Markov chains {X_n} that weakly converges to a Markov process X. We give sufficient condition for such a sequence to converge in distribution, formulated in terms of the cha
Complex systems often comprise many kinds of components which vary over many orders of magnitude in size: Populations of cities in countries, individual and corporate wealth in economies, species abundance in ecologies, word frequency in natural lang
In this paper we present the concept of description of random processes in complex systems with the discrete time. It involves the description of kinetics of discrete processes by means of the chain of finite-difference non-Markov equations for time