ﻻ يوجد ملخص باللغة العربية
Complex systems often comprise many kinds of components which vary over many orders of magnitude in size: Populations of cities in countries, individual and corporate wealth in economies, species abundance in ecologies, word frequency in natural language, and node degree in complex networks. Comparisons of component size distributions for two complex systems---or a system with itself at two different time points---generally employ information-theoretic instruments, such as Jensen-Shannon divergence. We argue that these methods lack transparency and adjustability, and should not be applied when component probabilities are non-sensible or are problematic to estimate. Here, we introduce `allotaxonometry along with `rank-turbulence divergence, a tunable instrument for comparing any two (Zipfian) ranked lists of components. We analytically develop our rank-based divergence in a series of steps, and then establish a rank-based allotaxonograph which pairs a map-like histogram for rank-rank pairs with an ordered list of components according to divergence contribution. We explore the performance of rank-turbulence divergence for a series of distinct settings including: Language use on Twitter and in books, species abundance, baby name popularity, market capitalization, performance in sports, mortality causes, and job titles. We provide a series of supplementary flipbooks which demonstrate the tunability and storytelling power of rank-based allotaxonometry.
Real-world complex systems often comprise many distinct types of elements as well as many more types of networked interactions between elements. When the relative abundances of types can be measured well, we further observe heavy-tailed categorical d
A key measure that has been used extensively in analyzing complex networks is the degree of a node (the number of the nodes neighbors). Because of its discrete nature, when the degree measure was used in analyzing weighted networks, weights were eith
For generic systems exhibiting power law behaviors, and hence multiscale dependencies, we propose a new, and yet simple, tool to analyze multifractality and intermittency, after noticing that these concepts are directly related to the deformation of
We study the self-organization of the consonant inventories through a complex network approach. We observe that the distribution of occurrence as well as cooccurrence of the consonants across languages follow a power-law behavior. The co-occurrence n
Stars and cycles are basic structures in network construction. The former has been well studied in network analysis, while the latter attracted rare attention. A node together with its neighbors constitute a neighborhood star-structure where the basi