ترغب بنشر مسار تعليمي؟ اضغط هنا

Variational Field Theoretic Approach to Relativistic Scattering

58   0   0.0 ( 0 )
 نشر من قبل Andreas Schreiber
 تاريخ النشر 1997
  مجال البحث
والبحث باللغة English
 تأليف C. Alexandrou




اسأل ChatGPT حول البحث

Nonperturbative polaron variational methods are applied, within the so-called particle or worldline representation of relativistic field theory, to study scattering in the context of the scalar Wick - Cutkosky model. Important features of the variational calculation are that it is a controlled approximation scheme valid for arbitrary coupling strengths, the Green functions have all the cuts and poles expected for the exact result at any order in perturbation theory and that the variational parameters are simultaneously sensitive to the infrared as well as the ultraviolet behaviour of the theory. We generalize the previously used quadratic trial action by allowing more freedom for off-shell propagation without a change in the on-shell variational equations and evaluate the scattering amplitude at first order in the variational scheme. Particular attention is paid to the $s$-channel scattering near threshold because here non-perturbative effects can be large. We check the unitarity of a our numerical calculation and find it greatly improved compared to perturbation theory and to the zeroth order variational results.



قيم البحث

اقرأ أيضاً

In this paper, we compare the RMF theory and the model of deformed oscillator shells (DOS) in description of the quantum properties of the bound states of the spherically symmetric light nuclei. We obtain an explicit analytical relation between diffe rential equations for the RMF theory and DOS model, which determine wave functions for nucleons. On such a basis we perform analysis of correspondence of quantum properties of nuclei. We find: (1) Potential $V_{RMF}$ of the RMF theory for nucleons has the wave functions $f$ and $g$ with joint part $h$ coincident exactly with the nucleon wave function of DOS model with potential $V_{rm shell}$. But, a difference between $V_{RMF}$ and $V_{rm shell}$ is essential for any nucleus. (2) The nucleon wave functions and densities obtained by the DOS and RMF theories are essentially different. The nucleon densities of the RMF theory contradict to knowledge about distribution of the proton and neutron densities inside the nuclei obtained from experimental data. This indicates that $g$ and $f$ have no sense of the wave functions of quantum physics. But, $h$ provides proper description of quantum properties of nucleons inside the nucleus. (3) We calculate meson function $w^{0}$ and potential $V_{w}$ in RMF theory based on the found nucleon density. (4) $f$ and $g$ are not solutions of Dirac equation with $V_{w}$. If the meson theory describes quantum properties of nucleus well, then a difference between $V_{w}$ and $V_{RMF}$ should be as small as possible. We introduce new quantum corrections characterizing difference between these potentials. We find that (a) The function $w^{0}$ should be reinforced strongly, (b) The corrections are necessary to describe the quantum properties of the nuclei.
We consider quantum inverse scattering with singular potentials and calculate the Sine-Gordon model effective potential in the laboratory and centre-of-mass frames. The effective potentials are frame dependent but closely resemble the zero-momentum p otential of the equivalent Ruijsenaars-Schneider model.
We develop a combined hydro-kinetic approach which incorporates a hydrodynamical expansion of the systems formed in textit{A}+textit{A} collisions and their dynamical decoupling described by escape probabilities. The method corresponds to a generaliz ed relaxation time ($tau_{text{rel}}$) approximation for the Boltzmann equation applied to inhomogeneous expanding systems; at small $tau_{text{rel}}$ it also allows one to catch the viscous effects in hadronic component - hadron-resonance gas. We demonstrate how the approximation of sudden freeze-out can be obtained within this dynamical picture of continuous emission and find that hypersurfaces, corresponding to a sharp freeze-out limit, are momentum dependent. The pion $m_{T}$ spectra are computed in the developed hydro-kinetic model, and compared with those obtained from ideal hydrodynamics with the Cooper-Frye isothermal prescription. Our results indicate that there does not exist a universal freeze-out temperature for pions with different momenta, and support an earlier decoupling of higher $p_{T}$ particles. By performing numerical simulations for various initial conditions and equations of state we identify several characteristic features of the bulk QCD matter evolution preferred in view of the current analysis of heavy ion collisions at RHIC energies.
We review integrated dynamical approaches to describe heavy ion reaction as a whole at ultrarelativistic energies. Since final observables result from all the history of the reaction, it is important to describe all the stages of the reaction to obta in the properties of the quark gluon plasma from experimental data. As an example of these approaches, we develop an integrated dynamical model, which is composed of a fully (3+1) dimensional ideal hydrodynamic model with the state-of-the-art equation of state based on lattice QCD, and subsequent hadronic cascade in the late stage. Initial conditions are obtained employing Monte Car
The hyperspherical harmonic (HH) method has been widely applied in recent times to the study of the bound states, using the Rayleigh-Ritz variational principle, and of low-energy scattering processes, using the Kohn variational principle, of A=3 and 4 nuclear systems. When the wave function of the system is expanded over a sufficiently large set of HH basis functions, containing or not correlation factors, quite accurate results can be obtained for the observables of interest. In this paper, the main aspects of the method are discussed together with its application to the A=3 and 4 nuclear bound and zero-energy scattering states. Results for a variety of nucleon-nucleon (NN) and three-nucleon (3N) local or non-local interactions are reported. In particular, NN and 3N interactions derived in the framework of the chiral effective field theory and NN potentials from which the high momentum components have been removed, as recently presented in the literature, are considered for the first time within the context of the HH method. The purpose of this paper is two-fold. First, to present a complete description of the HH method for bound and scattering states, including also detailed formulas for the computation of the matrix elements of the NN and 3N interactions. Second, to report accurate results for bound and zero-energy scattering states obtained with the most commonly used interaction models. These results can be useful for comparison with those obtained by other techniques and are a significant test for different future approaches to such problems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا