ﻻ يوجد ملخص باللغة العربية
The hyperspherical harmonic (HH) method has been widely applied in recent times to the study of the bound states, using the Rayleigh-Ritz variational principle, and of low-energy scattering processes, using the Kohn variational principle, of A=3 and 4 nuclear systems. When the wave function of the system is expanded over a sufficiently large set of HH basis functions, containing or not correlation factors, quite accurate results can be obtained for the observables of interest. In this paper, the main aspects of the method are discussed together with its application to the A=3 and 4 nuclear bound and zero-energy scattering states. Results for a variety of nucleon-nucleon (NN) and three-nucleon (3N) local or non-local interactions are reported. In particular, NN and 3N interactions derived in the framework of the chiral effective field theory and NN potentials from which the high momentum components have been removed, as recently presented in the literature, are considered for the first time within the context of the HH method. The purpose of this paper is two-fold. First, to present a complete description of the HH method for bound and scattering states, including also detailed formulas for the computation of the matrix elements of the NN and 3N interactions. Second, to report accurate results for bound and zero-energy scattering states obtained with the most commonly used interaction models. These results can be useful for comparison with those obtained by other techniques and are a significant test for different future approaches to such problems.
We examine the extent to which the properties of three-nucleon bound states are well-reproduced in the limit that nuclear forces satisfy Wigners SU(4) (spin-isospin) symmetry. To do this we compute the charge radii up to next-to-leading order (NLO) i
The Bethe-Salpeter equation for three bosons with zero-range interaction is solved for the first time. For comparison the light-front equation is also solved. The input is the two-body scattering length and the outputs are the three-body binding ener
We describe bound states, resonances and elastic scattering of light ions using a $delta$-shell potential. Focusing on low-energy data such as energies of bound states and resonances, charge radii, asymptotic normalization coefficients, effective-ran
In the past, several efficient methods have been developed to solve the Schroedinger equation for four-nucleon bound states accurately. These are the Faddeev-Yakubovsky, the coupled-rearrangement-channel Gaussian-basis variational, the stochastic var
Nonperturbative polaron variational methods are applied, within the so-called particle or worldline representation of relativistic field theory, to study scattering in the context of the scalar Wick - Cutkosky model. Important features of the variati