ﻻ يوجد ملخص باللغة العربية
If the deconfinement phase transformation of strongly interacting matter is of first-order and the expanding chromodynamic matter created in a high-energy nuclear collision enters the corresponding region of phase coexistence, a spinodal phase separation might occur. The matter would then condense into a number of separate blobs, each having a particular net strangeness that would remain approximately conserved during the further evolution. We investigate the effect that such `strangeness trapping may have on strangeness-related hadronic observables. The kaon multiplicity fluctuations are significantly enhanced and thus provide a possible tool for probing the nature of the phase transition experimentally.
The Omega-bar/Omega ratio originating from string decays is predicted to be larger than unity in proton-proton interaction at SPS energies. The anti-omega dominance increases with decreasing beam energy. This surprising behavior is caused by the comb
We consider the modification of the Cahn-Hilliard equation when a time delay process through a memory function is taken into account. We then study the process of spinodal decomposition in fast phase transitions associated with a conserved order para
Evidence of a primitive spinodal decomposition has been obtained for central Ni+Ni Heavy Ion Collision, since higher order charge correlations show a peak when four fragments of size equal to 6 are produced with an excitation of 4.75 MeV. This can be
We analyze the spinodal instabilities of spin polarized asymmetric nuclear matter at zero temperature for several configurations of the neutron and proton spins. The calculations are performed with the Brueckner--Hartree--Fock (BHF) approach using th
The fast simultaneous hadronization and chemical freeze out of supercooled quark-gluon plasma, created in relativistic heavy ion collisions, leads to the re-heating of the expanding matter and to the change in a collective flow profile. We use the as