ﻻ يوجد ملخص باللغة العربية
Evidence of a primitive spinodal decomposition has been obtained for central Ni+Ni Heavy Ion Collision, since higher order charge correlations show a peak when four fragments of size equal to 6 are produced with an excitation of 4.75 MeV. This can be considered as a signature of a primitive breakup in equal sized fragments with a privileged fragment size. This computational result confirms other experimental and theoretical evidences about spinodal decompostion in HIC.
We consider the modification of the Cahn-Hilliard equation when a time delay process through a memory function is taken into account. We then study the process of spinodal decomposition in fast phase transitions associated with a conserved order para
Nuclei undergo a phase transition in nuclear reactions according to a caloric curve determined by the amount of entropy. Here, the generation of entropy is studied in relation to the size of the nuclear system.
Multifragmentation of a ``fused system was observed for central collisions between 32 MeV/nucleon 129Xe and natSn. Most of the resulting charged products were well identified thanks to the high performances of the INDRA 4pi array. Experimental higher
Multifragmentation of fused systems was observed for central collisions between 32 AMeV 129Xe and Sn, and 36 AMeV 155Gd and U. Previous extensive comparisons between the two systems led to the hypothesis of spinodal decomposition of finite systems as
Thermal multifragmentation of hot nuclei is interpreted as the nuclear liquid-fog phase transition inside the spinodal region. The experimental data for p(8.1GeV) + Au collisions are analyzed within the framework of the statistical multifragmentation