ﻻ يوجد ملخص باللغة العربية
The connection between the enhancement factor (1+kappa) of the photonuclear E1 sum rule and the orbital angular momentum g-factor (gl) of a bound nucleon is investigated in the framework of the Landau-Migdal theory for isospin asymmetric nuclear matter. Special emphasis is put on the role of gauge invariance to establish the kappa-gl relation. By identifying the physical processes which are taken into account in kappa and gl, the validity and limitations of this relation are discussed. The connections to the collective excitations and to nuclear Compton scattering are also shown.
Three well known photonuclear sum rules (SR), i.e. the Thomas-Reiche-Kuhn, the bremsstrahlungs and the polarizability SR are calculated for 4He with the realistic nucleon-nucleon potential Argonne V18 and the three-nucleon force Urbana IX. The relati
The $S_{E1}$ factor of radiative $alpha$ capture on $^{12}$C is studied in effective field theory. We briefly discuss the strategy for the calculation of the reaction and report a first result of $S_{E1}$ at the Gamow-peak energy, $E_G=0.3$~MeV.
We review the known results on the bosonic spectrum in various NJL models both in the condensed matter physics and in relativistic quantum field theory including $^3$He-B, $^3$He-A, the thin films of superfluid He-3, and QCD (Hadronic phase and the C
The $f$ sum rule is derived in a non-relativistic frame and connected, via Ward Identities, to the low energy Thomson scattering. A generalisation to isospin symmetry in the nuclear case is discussed and linked to the Meson Exchange Currents. The ext
The Fubini-Furlan-Rossetti sum rule for pion photoproduction on the nucleon is evaluated by dispersion relations at constant t, and the corrections to the sum rule due to the finite pion mass are calculated. Near threshold these corrections turn out