ﻻ يوجد ملخص باللغة العربية
Three well known photonuclear sum rules (SR), i.e. the Thomas-Reiche-Kuhn, the bremsstrahlungs and the polarizability SR are calculated for 4He with the realistic nucleon-nucleon potential Argonne V18 and the three-nucleon force Urbana IX. The relation between these sum rules and the corresponding energy weighted integrals of the cross section is discussed. Two additional equivalences for the bremsstrahlungs SR are given, which connect it to the proton-neutron and neutron-neutron distances. Using them, together with our result for the bremsstrahlungs SR, we find a deviation from the tetrahedral symmetry of the spatial configuration of 4He. The possibility to access this deviation experimentally is discussed.
The Gerasimov-Drell-Hearn sum rule and related dispersive integrals connect real and virtual Compton scattering to inclusive photo- and electroproduction. Being based on universal principles as causality, unitarity, and gauge invariance, these relati
We demonstrate the capability of coupled-cluster theory to compute the Coulomb sum rule for the $^4$He and $^{16}$O nuclei using interactions from chiral effective field theory. We perform several checks, including a few-body benchmark for $^4$He. We
The connection between the enhancement factor (1+kappa) of the photonuclear E1 sum rule and the orbital angular momentum g-factor (gl) of a bound nucleon is investigated in the framework of the Landau-Migdal theory for isospin asymmetric nuclear matt
{it Ab initio} calculation of the total cross section for the reactions $^{4}rm{He}(gamma,p)^3rm{H}$ and $^{4}rm{He}(gamma,n)^3rm{He}$ is presented, using state-of-the-art nuclear forces. The Lorentz integral transform (LIT) method is applied, which
Four light-mass nuclei are considered by an effective two-body clusterisation method; $^6$Li as $^2$H$+^4$He, $^7$Li as $^3$H$+^4$He, $^7$Be as $^3$He$+^4$He, and $^8$Be as $^4$He$+^4$He. The low-energy spectrum of each is determined from single-chan