ﻻ يوجد ملخص باللغة العربية
Excitation functions of the $^{58}$Ni$(n,p)^{58}$Co$^{m,g}$ reactions were measured in the energy range from 2 to 15 MeV. The energy dependence of the isomeric cross-section ratio R=sigma_m/(sigma_m+sigma_g) is deduced from the measured data. The shape and magnitude of the R(E_n) function are described by model calculations using a consistent parameter set. Questions of the input level scheme were solved based on the accurate isomeric ratio measured at low energy region.
We present a new experimental method for measuring inner-shell ionization cross sections of low-charged ions colliding with hydrogen gas target in a storage ring. The method is based on a calibration by the well-known differential cross sections of p
The $^{58}$Ni$(n,gamma)^{59}$Ni cross section was measured with a combination of the activation technique and accelerator mass spectrometry (AMS). The neutron activations were performed at the Karlsruhe 3.7 MV Van de Graaff accelerator using the quas
Background: Using the chiral (Kyushu) $g$-matrix folding model with the densities calculated with Gogny-HFB (GHFB) with the angular momentum projection (AMP), we determined the central values of matter radius and neutron skin from the central values
Isospin diffusion is probed as a function of the dissipated energy by studying two systems $^{58}$Ni+$^{58}$Ni and $^{58}$Ni+$^{197}$Au, over the incident energy range 52-74AM. Experimental data are compared with the results of a microscopic transpor
The very first in-ring reaction experiment at the HIRFL-CSR heavy-ion storage ring, namely proton elastic scattering on stable $^{58}$Ni nuclei, is presented. The circulating $^{58}$Ni$^{19+}$ ions with an energy of 95 MeV/u were interacting repeated