ﻻ يوجد ملخص باللغة العربية
We present a new experimental method for measuring inner-shell ionization cross sections of low-charged ions colliding with hydrogen gas target in a storage ring. The method is based on a calibration by the well-known differential cross sections of proton elastic scattering on nuclei. $K$-shell ionization cross section of 1047(100) barn for the 95 MeV/u $^{58}$Ni$^{19+}$ ions colliding with hydrogen atoms was obtained in this work. Compared to the measured ionization cross section, a good agreement is achieved with the prediction by the Relativistic Ionization CODE Modified program (RICODE-M).
The very first in-ring reaction experiment at the HIRFL-CSR heavy-ion storage ring, namely proton elastic scattering on stable $^{58}$Ni nuclei, is presented. The circulating $^{58}$Ni$^{19+}$ ions with an energy of 95 MeV/u were interacting repeated
The $^{58}Ni+^{58}Ni$ reaction at 30 MeV/nucleon has been experimentally investigated at the Superconducting Cyclotron of the INFN Laboratori Nazionali del Sud. In midperipheral collisions the production of massive fragments (4$le$Z$le$12), consisten
Excitation functions of the $^{58}$Ni$(n,p)^{58}$Co$^{m,g}$ reactions were measured in the energy range from 2 to 15 MeV. The energy dependence of the isomeric cross-section ratio R=sigma_m/(sigma_m+sigma_g) is deduced from the measured data. The sha
Background: Using the chiral (Kyushu) $g$-matrix folding model with the densities calculated with Gogny-HFB (GHFB) with the angular momentum projection (AMP), we determined the central values of matter radius and neutron skin from the central values
The $^{58}$Ni$(n,gamma)^{59}$Ni cross section was measured with a combination of the activation technique and accelerator mass spectrometry (AMS). The neutron activations were performed at the Karlsruhe 3.7 MV Van de Graaff accelerator using the quas