ﻻ يوجد ملخص باللغة العربية
Symmetries as well as other special conditions can cause anomalous slowing down of fidelity decay. These situations will be characterized, and a family of random matrix models to emulate them generically presented. An analytic solution based on exponentiated linear response will be given. For one representative case the exact solution is obtained from a supersymmetric calculation. The results agree well with dynamical calculations for a kicked top.
From a reflection measurement in a rectangular microwave billiard with randomly distributed scatterers the scattering and the ordinary fidelity was studied. The position of one of the scatterers is the perturbation parameter. Such perturbations can b
We derive fidelity decay and parametric energy correlations for random matrix ensembles where time--reversal invariance of the original Hamiltonian is broken by the perturbation. Like in the case of a symmetry conserving perturbation a simple relation between both quantities can be established.
Unexpected relations between fidelity decay and cross form--factor, i.e., parametric level correlations in the time domain are found both by a heuristic argument and by comparing exact results, using supersymmetry techniques, in the framework of rand
We study the fidelity decay in the $k$-body embedded ensembles of random matrices for bosons distributed in two single-particle states, considering the reference or unperturbed Hamiltonian as the one-body terms and the diagonal part of the $k$-body e
This paper is based on recent work which provided an exact analytical description of scattering fidelity experiments with a microwave cavity under the variation of an antenna coupling [Kober et al., Phys. Rev. E 82, 036207 (2010)]. It is shown that t