ﻻ يوجد ملخص باللغة العربية
We study the fidelity decay in the $k$-body embedded ensembles of random matrices for bosons distributed in two single-particle states, considering the reference or unperturbed Hamiltonian as the one-body terms and the diagonal part of the $k$-body embedded ensemble of random matrices, and the perturbation as the residual off-diagonal part of the interaction. We calculate the ensemble-averaged fidelity with respect to an initial random state within linear response theory to second order on the perturbation strength, and demonstrate that it displays the freeze of the fidelity. During the freeze, the average fidelity exhibits periodic revivals at integer values of the Heisenberg time $t_H$. By selecting specific $k$-body terms of the residual interaction, we find that the periodicity of the revivals during the freeze of fidelity is an integer fraction of $t_H$, thus relating the period of the revivals with the range of the interaction $k$ of the perturbing terms. Numerical calculations confirm the analytical results.
This paper is based on recent work which provided an exact analytical description of scattering fidelity experiments with a microwave cavity under the variation of an antenna coupling [Kober et al., Phys. Rev. E 82, 036207 (2010)]. It is shown that t
Unexpected relations between fidelity decay and cross form--factor, i.e., parametric level correlations in the time domain are found both by a heuristic argument and by comparing exact results, using supersymmetry techniques, in the framework of rand
We consider performing adiabatic rapid passage (ARP) using frequency-swept driving pulses to excite a collection of interacting two-level systems. Such a model arises in a wide range of many-body quantum systems, such as cavity QED or quantum dots, w
We propose to utilize the sub-system fidelity (SSF), defined by comparing a pair of reduced density matrices derived from the degenerate ground states, to identify and/or characterize symmetry protected topological (SPT) states in one-dimensional int
We implement dynamical decoupling techniques to mitigate noise and enhance the lifetime of an entangled state that is formed in a superconducting flux qubit coupled to a microscopic two-level system. By rapidly changing the qubits transition frequenc