ﻻ يوجد ملخص باللغة العربية
A set is autoreducible if it can be reduced to itself by a Turing machine that does not ask its own input to the oracle. We use autoreducibility to separate the polynomial-time hierarchy from polynomial space by showing that all Turing-complete sets for certain levels of the exponential-time hierarchy are autoreducible but there exists some Turing-complete set for doubly exponential space that is not. Although we already knew how to separate these classes using diagonalization, our proofs separate classes solely by showing they have different structural properties, thus applying Posts Program to complexity theory. We feel such techniques may prove unknown separations in the future. In particular, if we could settle the question as to whether all Turing-complete sets for doubly exponential time are autoreducible, we would separate either polynomial time from polynomial space, and nondeterministic logarithmic space from nondeterministic polynomial time, or else the polynomial-time hierarchy from exponential time. We also look at the autoreducibility of complete sets under nonadaptive, bounded query, probabilistic and nonuniform reductions. We show how settling some of these autoreducibility questions will also read to new complexity class separations.
Henle, Mathias, and Woodin proved that, provided that $omegarightarrow(omega)^{omega}$ holds in a model $M$ of ZF, then forcing with $([omega]^{omega},subseteq^*)$ over $M$ adds no new sets of ordinals, thus earning the name a barren extension. Moreo
We prove a strong non-structure theorem for a class of metric structures with an unstable pair of formulae. As a consequence, we show that weak categoricity (that is, categoricity up to isomorphisms and not isometries) implies severa
For any pair of ordinals $alpha<beta$, $sf CA_alpha$ denotes the class of cylindric algebras of dimension $alpha$, $sf RCA_{alpha}$ denote the class of representable $sf CA_alpha$s and $sf Nr_alpha CA_beta$ ($sf Ra CA_beta)$ denotes the class of $alp
This is a short introductory course to Set Theory, based on axioms of von Neumann--Bernays--Godel (briefly NBG). The text can be used as a base for a lecture course in Foundations of Mathematics, and contains a reasonable minimum which a good (post-g