ﻻ يوجد ملخص باللغة العربية
We prove a strong non-structure theorem for a class of metric structures with an unstable pair of formulae. As a consequence, we show that weak categoricity (that is, categoricity up to isomorphisms and not isometries) implies severa
We compare three notions of genericity of separable metric structures. Our analysis provides a general model theoretic technique of showing that structures are generic in descriptive set theoretic (topological) sense and in measure theoretic sense.
The general theory developed by Ben Yaacov for metric structures provides Fraisse limits which are approximately ultrahomogeneous. We show here that this result can be strengthened in the case of relational metric structures. We give an extra conditi
When classes of structures are not first-order definable, we might still try to find a nice description. There are two common ways for doing this. One is to expand the language, leading to notions of pseudo-elementary classes, and the other is to all
Henle, Mathias, and Woodin proved that, provided that $omegarightarrow(omega)^{omega}$ holds in a model $M$ of ZF, then forcing with $([omega]^{omega},subseteq^*)$ over $M$ adds no new sets of ordinals, thus earning the name a barren extension. Moreo
A set is autoreducible if it can be reduced to itself by a Turing machine that does not ask its own input to the oracle. We use autoreducibility to separate the polynomial-time hierarchy from polynomial space by showing that all Turing-complete sets