ﻻ يوجد ملخص باللغة العربية
Let $V$ be a set of cardinality $v$ (possibly infinite). Two graphs $G$ and $G$ with vertex set $V$ are {it isomorphic up to complementation} if $G$ is isomorphic to $G$ or to the complement $bar G$ of $G$. Let $k$ be a non-negative integer, $G$ and $G$ are {it $k$-hypomorphic up to complementation} if for every $k$-element subset $K$ of $V$, the induced subgraphs $G_{restriction K}$ and $G_{restriction K}$ are isomorphic up to complementation. A graph $G$ is {it $k$-reconstructible up to complementation} if every graph $G$ which is $k$-hypomorphic to $G$ up to complementation is in fact isomorphic to $G$ up to complementation. We give a partial characterisation of the set $mathcal S$ of pairs $(n,k)$ such that two graphs $G$ and $G$ on the same set of $n$ vertices are equal up to complementation whenever they are $k$-hypomorphic up to complementation. We prove in particular that $mathcal S$ contains all pairs $(n,k)$ such that $4leq kleq n-4$. We also prove that 4 is the least integer $k$ such that every graph $G$ having a large number $n$ of vertices is $k$-reconstructible up to complementation; this answers a question raised by P. Ille
Inspired by applications of perfect graphs in combinatorial optimization, Chv{a}tal defined t-perfect graphs in 1970s. The long efforts of characterizing t-perfect graphs started immediately, but embarrassingly, even a working conjecture on it is sti
The blow-up lemma states that a system of super-regular pairs contains all bounded degree spanning graphs as subgraphs that embed into a corresponding system of complete pairs. This lemma has far-reaching applications in extremal combinatorics. We
An algorithm is presented for generating finite modular, semimodular, graded, and geometric lattices up to isomorphism. Isomorphic copies are avoided using a combination of the general-purpose graph-isomorphism tool nauty and some optimizations that
The rank of a graph is defined to be the rank of its adjacency matrix. A graph is called reduced if it has no isolated vertices and no two vertices with the same set of neighbors. A reduced graph $G$ is said to be maximal if any reduced graph contain
Complementation of Buchi automata has been studied for over five decades since the formalism was introduced in 1960. Known complementation constructions can be classified into Ramsey-based, determinization-based, rank-based, and slice-based approache