ﻻ يوجد ملخص باللغة العربية
The Hilbert-Smith Conjecture states that if G is a locally compact group which acts effectively on a connected manifold as a topological transformation group, then G is a Lie group. A rather straightforward proof of this conjecture is given. The motivation is work of Cernavskii (``Finite-to-one mappings of manifolds, Trans. of Math. Sk. 65 (107), 1964.) His work is generalized to the orbit map of an effective action of a p-adic group on compact connected n-manifolds with the aid of some new ideas. There is no attempt to use Smith Theory even though there may be similarities. It is well known that if a locally compact group acts effectively on a connected n-manifold M and G is not a Lie group, then there is a subgroup H of G isomorphic to a p-adic group A_p which acts effectively on M. It can be shown that A_p can not act effectively on an n-manifold and, hence, The Hilbert Smith Conjecture is true. The existence of a non empty fixed point set adds some complexity to the proof. In this paper, it is shown that A_p can not act freely on a compact connected n-manifold. The basic ideas for the general case are more clearly seen in this case. The general proof will be given in another paper.
The Hilbert-Smith Conjecture states that if G is a locally compact group which acts effectively on a connected manifold as a topological transformation group, then G is a Lie group. A rather straightforward proof of this conjecture is given. The moti
We outline the proof that non-triangulable manifolds exist in any dimension greater than four. The arguments involve homology cobordism invariants coming from the Pin(2) symmetry of the Seiberg-Witten equations. We also explore a related construction
The classifying space for the framed Haefliger structures of codimension $q$ and class $C^r$ is $(2q-1)$-connected, for $1le rleinfty$. The corollaries deal with the existence of foliations, with the homology and the perfectness of the diffeomorphism
A quadrisecant of a knot is a straight line intersecting the knot at four points. If a knot has finitely many quadrisecants, one can replace each subarc between two adjacent secant points by the line segment between them to get the quadrisecant appro
The Knight Move Conjecture claims that the Khovanov homology of any knot decomposes as direct sums of some knight move pairs and a single pawn move pair. This is true for instance whenever the Lee spectral sequence from Khovanov homology to Q^2 conve