ﻻ يوجد ملخص باللغة العربية
A quadrisecant of a knot is a straight line intersecting the knot at four points. If a knot has finitely many quadrisecants, one can replace each subarc between two adjacent secant points by the line segment between them to get the quadrisecant approximation of the original knot. It was conjectured that the quadrisecant approximation is always a knot with the same knot type as the original knot. We show that every knot type contains two knots, the quadrisecant approximation of one knot has self intersections while the quadrisecant approximation of the other knot is a knot with different knot type.
Hedetniemi conjectured in 1966 that $chi(G times H) = min{chi(G), chi(H)}$ for all graphs $G$ and $H$. Here $Gtimes H$ is the graph with vertex set $ V(G)times V(H)$ defined by putting $(x,y)$ and $(x,y)$ adjacent if and only if $xxin E(G)$ and $yyin
We give improved separations for the query complexity analogue of the log-approximate-rank conjecture i.e. we show that there are a plethora of total Boolean functions on $n$ input bits, each of which has approximate Fourier sparsity at most $O(n^3)$
The Hall ratio of a graph $G$ is the maximum value of $v(H) / alpha(H)$ taken over all non-null subgraphs $H$ of $G$. For any graph, the Hall ratio is a lower-bound on its fractional chromatic number. In this note, we present various constructions of
In this short note we report on results on a computational search for a counterexample to the strong coincidence conjecture. In particular, we discuss the method used so that further searches can be conducted.
The Hilbert-Smith Conjecture states that if G is a locally compact group which acts effectively on a connected manifold as a topological transformation group, then G is a Lie group. A rather straightforward proof of this conjecture is given. The moti