ترغب بنشر مسار تعليمي؟ اضغط هنا

Classical and quantum three-dimensional integrable systems with axial symmetry

61   0   0.0 ( 0 )
 نشر من قبل Manuel Gadella
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the most general form of a three dimensional classical integrable system with axial symmetry and invariant under the axis reflection. We assume that the three constants of motion are the Hamiltonian, $H$, with the standard form of a kinetic part plus a potential dependent on the position only, the $z$-component of the angular momentum, $L$, and a Hamiltonian-like constant, $widetilde H$, for which the kinetic part is quadratic in the momenta. We find the explicit form of these potentials compatible with complete integrability. The classical equations of motion, written in terms of two arbitrary potential functions, is separated in oblate spheroidal coordinates. The quantization of such systems leads to a set of two differential equations that can be presented in the form of spheroidal wave equations.



قيم البحث

اقرأ أيضاً

143 - A. Buryak , P. Rossi 2015
In this paper we define a quantization of the Double Ramification Hierarchies of [Bur15b] and [BR14], using intersection numbers of the double ramification cycle, the full Chern class of the Hodge bundle and psi-classes with a given cohomological fie ld theory. We provide effective recursion formulae which determine the full quantum hierarchy starting from just one Hamiltonian, the one associated with the first descendant of the unit of the cohomological field theory only. We study various examples which provide, in very explicit form, new $(1+1)$-dimensional integrable quantum field theories whose classical limits are well-known integrable hierarchies such as KdV, Intermediate Long Wave, Extended Toda, etc. Finally we prove polynomiality in the ramification multiplicities of the integral of any tautological class over the double ramification cycle.
It is shown that planar quantum dynamics can be related to 3-body quantum dynamics in the space of relative motion with a special class of potentials. As an important special case the $O(d)$ symmetry reduction from $d$ degrees of freedom to one degre e is presented. A link between two-dimensional (super-integrable) systems and 3-body (super-integrable) systems is revealed. As illustration we present number of examples. We demonstrate that the celebrated Calogero-Wolfes 3-body potential has a unique property: two-dimensional quantum dynamics coincides with 3-body quantum dynamics on the line at $d=1$; it is governed by the Tremblay-Turbiner-Winternitz potential for parameter $k=3$.
In complete analogy with the classical situation (which is briefly reviewed) it is possible to define bi-Hamiltonian descriptions for Quantum systems. We also analyze compatible Hermitian structures in full analogy with compatible Poisson structures.
We analyze the behavior of quantum dynamical entropies production from sequences of quantum approximants approaching their (chaotic) classical limit. The model of the quantized hyperbolic automorphisms of the 2-torus is examined in detail and a semi- classical analysis is performed on it using coherent states, fulfilling an appropriate dynamical localization property. Correspondence between quantum dynamical entropies and the Kolmogorov-Sinai invariant is found only over time scales that are logarithmic in the quantization parameter.
Resonant systems emerge as weakly nonlinear approximations to problems with highly resonant linearized perturbations. Examples include nonlinear Schroedinger equations in harmonic potentials and nonlinear dynamics in Anti-de Sitter spacetime. The cla ssical dynamics within this class of systems can be very rich, ranging from fully integrable to chaotic as one changes the values of the mode coupling coefficients. Here, we initiate a study of quantum infinite-dimensional resonant systems, which are mathematically a highly special case of two-body interaction Hamiltonians (extensively researched in condensed matter, nuclear and high-energy physics). Despite the complexity of the corresponding classical dynamics, the quantum version turns out to be remarkably simple: the Hamiltonian is block-diagonal in the Fock basis, with all blocks of varying finite sizes. Being solvable in terms of diagonalizing finite numerical matrices, these systems are thus arguably the simplest interacting quantum field theories known to man. We demonstrate how to perform the diagonalization in practice, and study both numerical patterns emerging for the integrable cases, and the spectral statistics, which efficiently distinguishes the special integrable cases from generic (chaotic) points in the parameter space. We discuss a range of potential applications in view of the computational simplicity and dynamical richness of quantum resonant systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا