ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum resonant systems, integrable and chaotic

70   0   0.0 ( 0 )
 نشر من قبل Oleg Evnin
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Resonant systems emerge as weakly nonlinear approximations to problems with highly resonant linearized perturbations. Examples include nonlinear Schroedinger equations in harmonic potentials and nonlinear dynamics in Anti-de Sitter spacetime. The classical dynamics within this class of systems can be very rich, ranging from fully integrable to chaotic as one changes the values of the mode coupling coefficients. Here, we initiate a study of quantum infinite-dimensional resonant systems, which are mathematically a highly special case of two-body interaction Hamiltonians (extensively researched in condensed matter, nuclear and high-energy physics). Despite the complexity of the corresponding classical dynamics, the quantum version turns out to be remarkably simple: the Hamiltonian is block-diagonal in the Fock basis, with all blocks of varying finite sizes. Being solvable in terms of diagonalizing finite numerical matrices, these systems are thus arguably the simplest interacting quantum field theories known to man. We demonstrate how to perform the diagonalization in practice, and study both numerical patterns emerging for the integrable cases, and the spectral statistics, which efficiently distinguishes the special integrable cases from generic (chaotic) points in the parameter space. We discuss a range of potential applications in view of the computational simplicity and dynamical richness of quantum resonant systems.



قيم البحث

اقرأ أيضاً

Weakly nonlinear energy transfer between normal modes of strongly resonant PDEs is captured by the corresponding effective resonant systems. In a previous article, we have constructed a large class of such resonant systems (with specific representati ves related to the physics of Bose-Einstein condensates and Anti-de Sitter spacetime) that admit special analytic solutions and an extra conserved quantity. Here, we develop and explore a complex plane representation for these systems modelled on the related cubic Szego and LLL equations. To demonstrate the power of this representation, we use it to give simple closed form expressions for families of stationary states bifurcating from all individual modes. The conservation laws, the complex plane representation and the stationary states admit furthermore a natural generalization from cubic to quintic nonlinearity. We demonstrate how two concrete quintic PDEs of mathematical physics fit into this framework, and thus directly benefit from the analytic structures we present: the quintic nonlinear Schroedinger equation in a one-dimensional harmonic trap, studied in relation to Bose-Einstein condensates, and the quintic conformally invariant wave equation on a two-sphere, which is of interest for AdS/CFT-correspondence.
In this paper we outline the construction of semiclassical eigenfunctions of integrable models in terms of the semiclassical path integral for the Poisson sigma model with the target space being the phase space of the integrable system. The semiclass ical path integral is defined as a formal power series with coefficients being Feynman diagrams. We also argue that in a similar way one can obtain irreducible semiclassical representations of Kontsevichs star product.
285 - Eugene Kanzieper 2014
The Painleve transcendents discovered at the turn of the XX century by pure mathematical reasoning, have later made their surprising appearance -- much in the way of Wigners miracle of appropriateness -- in various problems of theoretical physics. Th e notable examples include the two-dimensional Ising model, one-dimensional impenetrable Bose gas, corner and polynuclear growth models, one dimensional directed polymers, string theory, two dimensional quantum gravity, and spectral distributions of random matrices. In the present contribution, ideas of integrability are utilized to advocate emergence of an one-dimensional Toda Lattice and the fifth Painleve transcendent in the paradigmatic problem of conductance fluctuations in quantum chaotic cavities coupled to the external world via ballistic point contacts. Specifically, the cumulants of the Landauer conductance of a cavity with broken time-reversal symmetry are proven to be furnished by the coefficients of a Taylor-expanded Painleve V function. Further, the relevance of the fifth Painleve transcendent for a closely related problem of sample-to-sample fluctuations of the noise power is discussed. Finally, it is demonstrated that inclusion of tunneling effects inherent in realistic point contacts does not destroy the integrability: in this case, conductance fluctuations are shown to be governed by a two-dimensional Toda Lattice.
165 - A. Buryak , P. Rossi 2015
In this paper we define a quantization of the Double Ramification Hierarchies of [Bur15b] and [BR14], using intersection numbers of the double ramification cycle, the full Chern class of the Hodge bundle and psi-classes with a given cohomological fie ld theory. We provide effective recursion formulae which determine the full quantum hierarchy starting from just one Hamiltonian, the one associated with the first descendant of the unit of the cohomological field theory only. We study various examples which provide, in very explicit form, new $(1+1)$-dimensional integrable quantum field theories whose classical limits are well-known integrable hierarchies such as KdV, Intermediate Long Wave, Extended Toda, etc. Finally we prove polynomiality in the ramification multiplicities of the integral of any tautological class over the double ramification cycle.
Starting from a $dtimes d$ rational Lax pair system of the form $hbar partial_x Psi= LPsi$ and $hbar partial_t Psi=RPsi$ we prove that, under certain assumptions (genus $0$ spectral curve and additional conditions on $R$ and $L$), the system satisfie s the topological type property. A consequence is that the formal $hbar$-WKB expansion of its determinantal correlators, satisfy the topological recursion. This applies in particular to all $(p,q)$ minimal models reductions of the KP hierarchy, or to the six Painleve systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا