ترغب بنشر مسار تعليمي؟ اضغط هنا

The Square of the Dirac and spin-Dirac Operators on a Riemann-Cartan Space(time)

73   0   0.0 ( 0 )
 نشر من قبل Waldyr A. Rodrigues Jr.
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we introduce the Dirac and spin-Dirac operators associated to a connection on Riemann-Cartan space(time) and standard Dirac and spin-Dirac operators associated with a Levi-Civita connection on a Riemannian (Lorentzian) space(time) and calculate the square of these operators, which play an important role in several topics of modern Mathematics, in particular in the study of the geometry of moduli spaces of a class of black holes, the geometry of NS-5 brane solutions of type II supergravity theories and BPS solitons in some string theories. We obtain a generalized Lichnerowicz formula, decompositions of the Dirac and spin-Dirac operators and their squares in terms of the standard Dirac and spin-Dirac operators and using the fact that spinor fields (sections of a spin-Clifford bundle) have representatives in the Clifford bundle we present also a noticeable relation involving the spin-Dirac and the Dirac operators.



قيم البحث

اقرأ أيضاً

We discuss the continuum limit of discrete Dirac operators on the square lattice in $mathbb R^2$ as the mesh size tends to zero. To this end, we propose a natural and simple embedding of $ell^2(mathbb Z_h^d)$ into $L^2(mathbb R^d)$ that enables us to compare the discrete Dirac operators with the continuum Dirac operators in the same Hilbert space $L^2(mathbb R^2)^2$. In particular, we prove strong resolvent convergence. Potentials are assumed to be bounded and uniformly continuous functions on $mathbb R^2$ and allowed to be complex matrix-valued.
The purpose of this paper is to define the concept of multi-Dirac structures and to describe their role in the description of classical field theories. We begin by outlining a variational principle for field theories, referred to as the Hamilton-Pont ryagin principle, and we show that the resulting field equations are the Euler-Lagrange equations in implicit form. Secondly, we introduce multi-Dirac structures as a graded analog of standard Dirac structures, and we show that the graph of a multisymplectic form determines a multi-Dirac structure. We then discuss the role of multi-Dirac structures in field theory by showing that the implicit field equations obtained from the Hamilton-Pontryagin principle can be described intrinsically using multi-Dirac structures. Furthermore, we show that any multi-Dirac structure naturally gives rise to a multi-Poisson bracket. We treat the case of field theories with nonholonomic constraints, showing that the integrability of the constraints is equivalent to the integrability of the underlying multi-Dirac structure. We finish with a number of illustrative examples, including time-dependent mechanics, nonlinear scalar fields and the electromagnetic field.
124 - Hynek Kovav{r}ik 2021
We consider two-dimensional Pauli and Dirac operators with a polynomially vanishing magnetic field. The main results of the paper provide resolvent expansions of these operators in the vicinity of their thresholds. It is proved that the nature of the se expansions is fully determined by the flux of the magnetic field. The most important novelty of the proof is a comparison between the spatial asymptotics of the zero modes obtained in two different manners. The result of this matching allows to compute explicitly all the singular terms in the associated resolvent expansions. As an application we show how the magnetic field influences the time decay of the associated wave-functions quantifying thereby the paramagnetic and diamagnetic effects of the spin.
Dirac structures are geometric objects that generalize both Poisson structures and presymplectic structures on manifolds. They naturally appear in the formulation of constrained mechanical systems. In this paper, we show that the evolution equa- tion s for nonequilibrium thermodynamics admit an intrinsic formulation in terms of Dirac structures, both on the Lagrangian and the Hamiltonian settings. In absence of irreversible processes these Dirac structures reduce to canonical Dirac structures associated to canonical symplectic forms on phase spaces. Our geometric formulation of nonequilibrium thermodynamic thus consistently extends the geometric formulation of mechanics, to which it reduces in absence of irreversible processes. The Dirac structures are associated to the variational formulation of nonequilibrium thermodynamics developed in Gay-Balmaz and Yoshimura [2016a,b] and are induced from a nonlinear nonholonomic constraint given by the expression of the entropy production of the system.
In this paper we study Dirac-Hestenes spinor fields (DHSF) on a four-dimensional Riemann-Cartan spacetime (RCST). We prove that these fields must be defined as certain equivalence classes of even sections of the Clifford bundle (over the RCST), there by being certain particular sections of a new bundle named Spin-Clifford bundle (SCB). The conditions for the existence of the SCB are studied and are shown to be equivalent to the famous Gerochs theorem concerning to the existence of spinor structures in a Lorentzian spacetime. We introduce also the covariant and algebraic Dirac spinor fields and compare these with DHSF, showing that all the three kinds of spinor fields contain the same mathematical and physical information. We clarify also the notion of (Crumeyrolles) amorphous spinors (Dirac-Kahler spinor fields are of this type), showing that they cannot be used to describe fermionic fields. We develop a rigorous theory for the covariant derivatives of Clifford fields (sections of the Clifford bundle (CB)) and of Dirac-Hestenes spinor fields. We show how to generalize the original Dirac-Hestenes equation in Minkowski spacetime for the case of a RCST. Our results are obtained from a variational principle formulated through the multiform derivative approach to Lagrangian field theory in the Clifford bundle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا