ﻻ يوجد ملخص باللغة العربية
We discuss the continuum limit of discrete Dirac operators on the square lattice in $mathbb R^2$ as the mesh size tends to zero. To this end, we propose a natural and simple embedding of $ell^2(mathbb Z_h^d)$ into $L^2(mathbb R^d)$ that enables us to compare the discrete Dirac operators with the continuum Dirac operators in the same Hilbert space $L^2(mathbb R^2)^2$. In particular, we prove strong resolvent convergence. Potentials are assumed to be bounded and uniformly continuous functions on $mathbb R^2$ and allowed to be complex matrix-valued.
We show that the eigenvalues of the intrinsic Dirac operator on the boundary of a Euclidean domain can be obtained as the limits of eigenvalues of Euclidean Dirac operators, either in the domain with a MIT-bag type boundary condition or in the whole
Depending on the behaviour of the complex-valued electromagnetic potential in the neighbourhood of infinity, pseudomodes of one-dimensional Dirac operators corresponding to large pseudoeigenvalues are constructed. This is a first systematic non-semi-
In this paper we introduce the Dirac and spin-Dirac operators associated to a connection on Riemann-Cartan space(time) and standard Dirac and spin-Dirac operators associated with a Levi-Civita connection on a Riemannian (Lorentzian) space(time) and c
We address the problem of the continuum limit for a system of Hausdorff lattices (namely lattices of isolated points) approximating a topological space $M$. The correct framework is that of projective systems. The projective limit is a universal spac
We consider some compact non-selfadjoint perturbations of fibered one-dimensional discrete Schrodinger operators. We show that the perturbed operator exhibits finite discrete spectrum under suitable- regularity conditions.