ترغب بنشر مسار تعليمي؟ اضغط هنا

Branched Polymers and Dimensional Reduction

120   0   0.0 ( 0 )
 نشر من قبل John Z. Imbrie
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We establish an exact relation between self-avoiding branched polymers in D+2 continuum dimensions and the hard-core continuum gas at negative activity in D dimensions. We review conjectures and results on critical exponents for D+2 = 2,3,4 and show that they are corollaries of our result. We explain the connection (first proposed by Parisi and Sourlas) between branched polymers in D+2 dimensions and the Yang-Lee edge singularity in D dimensions.



قيم البحث

اقرأ أيضاً

105 - John Z. Imbrie 2004
Dimensional reduction occurs when the critical behavior of one system can be related to that of another system in a lower dimension. We show that this occurs for directed branched polymers (DBP) by giving an exact relationship between DBP models in D +1 dimensions and repulsive gases at negative activity in D dimensions. This implies relations between exponents of the two models: $gamma(D+1)=alpha(D)$ (the exponent describing the singularity of the pressure), and $ u_{perp}(D+1)= u(D)$ (the correlation length exponent of the repulsive gas). It also leads to the relation $theta(D+1)=1+sigma(D)$, where $sigma(D)$ is the Yang-Lee edge exponent. We derive exact expressions for the number of DBP of size N in two dimensions.
188 - John Z. Imbrie 2003
This article will review recent results on dimensional reduction for branched polymers, and discuss implications for critical phenomena. Parisi and Sourlas argued in 1981 that branched polymers fall into the universality class of the Yang-Lee edge in two fewer dimensions. Brydges and I have proven in [math-ph/0107005] that the generating function for self-avoiding branched polymers in D+2 continuum dimensions is proportional to the pressure of the hard-core continuum gas at negative activity in D dimensions (which is in the Yang-Lee or $i phi^3$ class). I will describe how this equivalence arises from an underlying supersymmetry of the branched polymer model. - I will also use dimensional reduction to analyze the crossover of two-dimensional branched polymers to their mean-field limit, and to show that the scaling is given by an Airy function (the same as in [cond-mat/0107223]).
In [math-ph/0107005] we have proven that the generating function for self-avoiding branched polymers in D+2 continuum dimensions is proportional to the pressure of the hard-core continuum gas at negative activity in D dimensions. This result explains why the critical behavior of branched polymers should be the same as that of the $i phi^3$ (or Yang-Lee edge) field theory in two fewer dimensions (as proposed by Parisi and Sourlas in 1981). - In this article we review and generalize the results of [math-ph/0107005]. We show that the generating functions for several branched polymers are proportional to correlation functions of the hard-core gas. We derive Ward identities for certain branched polymer correlations. We give reduction formulae for multi-species branched polymers and the corresponding repulsive gases. Finally, we derive the massive scaling limit for the 2-point function of the one-dimensional hard-core gas, and thereby obtain the scaling form of the 2-point function for branched polymers in three dimensions.
We consider two intimately related statistical mechanical problems on $mathbb{Z}^3$: (i) the tricritical behaviour of a model of classical unbounded $n$-component continuous spins with a triple-well single-spin potential (the $|varphi|^6$ model), and (ii) a random walk model of linear polymers with a three-body repulsion and two-body attraction at the tricritical theta point (critical point for the collapse transition) where repulsion and attraction effectively cancel. The polymer model is exactly equivalent to a supersymmetric spin model which corresponds to the $n=0$ version of the $|varphi|^6$ model. For the spin and polymer models, we identify the tricritical point, and prove that the tricritical two-point function has Gaussian long-distance decay, namely $|x|^{-1}$. The proof is based on an extension of a rigorous renormalisation group method that has been applied previously to analyse the $|varphi|^4$ and weakly self-avoiding walk models on $mathbb{Z}^4$.
We describe a novel approach to dimensional reduction in classical field theory. Inspired by ideas from noncommutative geometry, we introduce extended algebras of differential forms over space-time, generalized exterior derivatives and generalized co nnections associated with the geometry of space-times with discrete extra dimensions. We apply our formalism to theories of gauge- and gravitational fields and find natural geometrical origins for an axion- and a dilaton field, as well as a Higgs field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا