ﻻ يوجد ملخص باللغة العربية
Dimensional reduction occurs when the critical behavior of one system can be related to that of another system in a lower dimension. We show that this occurs for directed branched polymers (DBP) by giving an exact relationship between DBP models in D+1 dimensions and repulsive gases at negative activity in D dimensions. This implies relations between exponents of the two models: $gamma(D+1)=alpha(D)$ (the exponent describing the singularity of the pressure), and $ u_{perp}(D+1)= u(D)$ (the correlation length exponent of the repulsive gas). It also leads to the relation $theta(D+1)=1+sigma(D)$, where $sigma(D)$ is the Yang-Lee edge exponent. We derive exact expressions for the number of DBP of size N in two dimensions.
We establish an exact relation between self-avoiding branched polymers in D+2 continuum dimensions and the hard-core continuum gas at negative activity in D dimensions. We review conjectures and results on critical exponents for D+2 = 2,3,4 and show
This article will review recent results on dimensional reduction for branched polymers, and discuss implications for critical phenomena. Parisi and Sourlas argued in 1981 that branched polymers fall into the universality class of the Yang-Lee edge in
In [math-ph/0107005] we have proven that the generating function for self-avoiding branched polymers in D+2 continuum dimensions is proportional to the pressure of the hard-core continuum gas at negative activity in D dimensions. This result explains
A directed path in the vicinity of a hard wall exerts pressure on the wall because of loss of entropy. The pressure at a particular point may be estimated by estimating the loss of entropy if the point is excluded from the path. In this paper we dete
We explore the effect of an attractive interaction between parallel-aligned polymers, which are perpendicularly grafted on a substrate. Such an attractive interaction could be due to, e.g., reversible cross-links. The competition between permanent gr