ترغب بنشر مسار تعليمي؟ اضغط هنا

Gauge conditions for non-abelian Chern-Simons system consistent with equations of motion

59   0   0.0 ( 0 )
 نشر من قبل Pankaj Sharan
 تاريخ النشر 1999
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Complete constraint analysis and choice of gauge conditions consistent with equations of motion is done for non-abelian Chern-Simons field interacting with N-component complex scalar field. Dirac-Schwinger condition is satisfied by the reduced phase-space Hamiltonian density with respect to the Dirac bracket.



قيم البحث

اقرأ أيضاً

The vortex solutions of various classical planar field theories with (Abelian) Chern-Simons term are reviewed. Relativistic vortices, put forward by Paul and Khare, arise when the Abelian Higgs model is augmented with the Chern-Simons term. Adding a suitable sixth-order potential and turning off the Maxwell term provides us with pure Chern-Simons theory with both topological and non-topological self-dual vortices, as found by Hong-Kim-Pac, and by Jackiw-Lee-Weinberg. The non-relativistic limit of the latter leads to non-topological Jackiw-Pi vortices with a pure fourth-order potential. Explicit solutions are found by solving the Liouville equation. The scalar matter field can be replaced by spinors, leading to fermionic vortices. Alternatively, topological vortices in external field are constructed in the phenomenological model proposed by Zhang-Hansson-Kivelson. Non-relativistic Maxwell-Chern-Simons vortices are also studied. The Schroedinger symmetry of Jackiw-Pi vortices, as well as the construction of some time-dependent vortices, can be explained by the conformal properties of non-relativistic space-time, derived in a Kaluza-Klein-type framework.
Using Faddeev-Senjanovic path integral quantization for constrained Hamilton system, we quantize SU(n) N=2 supersymmetric gauge field system with non-abelian Chern-Simons topological term in 2+1 dimensions, and use consistency of a gauge condition na turally to deduce another gauge condition. Further, we get the generating functional of Green function in phase space, deduce the angular momentum based on the global canonical Noether theorem at quantum level, obtain the fractional spin of this supersymmetric system, and show that the total angular momentum has the orbital angular momentum and spin angular momentum of the non-abelian gauge field. Finally, we find out the anomalous fractional spin and discover that the fractional spin has the contributions of both the group superscript components and the A_0^s (x) charge.
105 - B. Doucot , L. B. Ioffe 2005
We construct the local Hamiltonian description of the Chern-Simons theory with discrete non-Abelian gauge group on a lattice. We show that the theory is fully determined by the phase factors associated with gauge transformations and classify all poss ible non-equivalent phase factors. We also construct the gauge invariant electric field operators that move fluxons around and create/anihilate them. We compute the resulting braiding properties of the fluxons. We apply our general results to the simplest class of non-Abelian groups, dihedral groups D_n.
89 - J.L. Acebal 2000
The general method of reduction in the number of coupling parameters is applied in a Chern-Simons-matter model with several independent couplings. We claim that considering the asymptotic region, and expressing all dimensionless coupling parameters a s functions of the Chern-Simons coupling, it is possible to show that all $beta$-functions vanish to any order of perturbative series. Therefore, the model is asymptotically scale invariant.
We examine vortices in Abelian Chern-Simons theory coupled to a relativistic scalar field with a chemical potential for particle number or U(1) charge. The Gauss constraint requires chemical potential for the local symmetry to be accompanied by a con stant background charge density/magnetic field. Focussing attention on power law scalar potentials $sim|Phi|^{2s}$ which do not support vortex configurations in vacuum but do so at finite chemical potential, we numerically study classical vortex solutions for large winding number |n| >> 1. The solutions depending on a single dimensionless parameter $alpha$, behave as uniform incompressible droplets with radius $sim sqrt {alpha |n|}$ , and energy scaling linearly with |n|, independent of coupling constant. In all cases, the vortices transition from type I to type II at a critical value of the dimensionless parameter, $alpha_c = s/(s-1)$, which we confirm with analytical arguments and numerical methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا