ﻻ يوجد ملخص باللغة العربية
We construct the local Hamiltonian description of the Chern-Simons theory with discrete non-Abelian gauge group on a lattice. We show that the theory is fully determined by the phase factors associated with gauge transformations and classify all possible non-equivalent phase factors. We also construct the gauge invariant electric field operators that move fluxons around and create/anihilate them. We compute the resulting braiding properties of the fluxons. We apply our general results to the simplest class of non-Abelian groups, dihedral groups D_n.
Two-component fermionic superfluids on a lattice with an external non-Abelian gauge field give access to a variety of topological phases in presence of a sufficiently large spin imbalance. We address here the important issue of superfluidity breakdow
The vortex solutions of various classical planar field theories with (Abelian) Chern-Simons term are reviewed. Relativistic vortices, put forward by Paul and Khare, arise when the Abelian Higgs model is augmented with the Chern-Simons term. Adding a
Complete constraint analysis and choice of gauge conditions consistent with equations of motion is done for non-abelian Chern-Simons field interacting with N-component complex scalar field. Dirac-Schwinger condition is satisfied by the reduced phase-
We present general symmetry arguments that show the appearance of doubly denerate states protected from external perturbations in a wide class of Hamiltonians. We construct the simplest spin Hamiltonian belonging to this class and study its propertie
Here, we provide a simple Hubbard-like model of spin-$1/2$ fermions that gives rise to the SU(2) symmetric Thirring model that is equivalent, in the low-energy limit, to Yang-Mills-Chern-Simons model. First, we identify the regime that simulates the