ﻻ يوجد ملخص باللغة العربية
In this paper we study the structure of the Hilbert space for the recent noncommutative geometry models of gauge theories. We point out the presence of unphysical degrees of freedom similar to the ones appearing in lattice gauge theories (fermion doubling). We investigate the possibility of projecting out these states at the various levels in the construction, but we find that the results of these attempts are either physically unacceptable or geometrically unappealing.
I review results from recent investigations of anomalies in fermion--Yang Mills systems in which basic notions from noncommutative geometry (NCG) where found to naturally appear. The general theme is that derivations of anomalies from quantum field t
The Connes and Lott reformulation of the strong and electroweak model represents a promising application of noncommutative geometry. In this scheme the Higgs field naturally appears in the theory as a particular `gauge boson, connected to the discret
We propose a new approach to the fermion sign problem in systems where there is a coupling $U$ such that when it is infinite the fermions are paired into bosons and there is no fermion permutation sign to worry about. We argue that as $U$ becomes fin
We discuss ideal delocalization of fermions in a bulk SU(2) x SU(2) x U(1) Higgsless model with a flat or warped extra dimension. So as to make an extra dimensional interpretation possible, both the weak and hypercharge properties of the fermions are
We calculate conformal anomalies in noncommutative gauge theories by using the path integral method (Fujikawas method). Along with the axial anomalies and chiral gauge anomalies, conformal anomalies take the form of the straightforward Moyal deformat